|
|
高温合金GH4169的动态再结晶和组织演化机制 |
于森1, 陈乐利1, 罗锐1,3( ), 袁志钟1, 王爽1, 高佩1,3, 程晓农1 |
1.江苏大学材料科学与工程学院 镇江 212013 2.南京工程学院 江苏省先进结构材料与应用技术重点实验室 南京 211167 3.江苏银环精密钢管有限公司 宜兴 214203 |
|
Dynamic Recrystallization and Microstructure Evolution Mechanism of GH4169 Alloy |
YU Sen1, CHEN Leli1, LUO Rui1,3( ), YUAN Zhizhong1, WANG Shuang1, GAO Pei1,3, CHENG Xiaonong1 |
1.School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China 2.Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing Institute of Technology, Nanjing 211167, China 3.Jiangsu Yinhuan Precision Steel Tube Co., Ltd., Yixing 214203, China |
引用本文:
于森, 陈乐利, 罗锐, 袁志钟, 王爽, 高佩, 程晓农. 高温合金GH4169的动态再结晶和组织演化机制[J]. 材料研究学报, 2023, 37(3): 211-218.
Sen YU,
Leli CHEN,
Rui LUO,
Zhizhong YUAN,
Shuang WANG,
Pei GAO,
Xiaonong CHENG.
Dynamic Recrystallization and Microstructure Evolution Mechanism of GH4169 Alloy[J]. Chinese Journal of Materials Research, 2023, 37(3): 211-218.
1 |
Zhang G Q, Zhang R W, Yang Y R. The microstructure of two premium quality GH4169 superalloy and its effect on stress-rupture properties [J]. J. Mater. Eng., 1991(06): 13
|
1 |
张国庆, 张荣武, 杨玉荣. 两种优质GH4169合金的显微组织及其对持久性能的影响 [J]. 材料工程, 1991(06): 13
|
2 |
Liu F, Sun W R, Yang S L. Effect of Al on impact properties of GH4169 alloy [J]. Chin. J. Mater. Res., 2008(03): 230
|
2 |
刘 芳, 孙文儒, 杨树林. A1对GH4169合金冲击性能的影响 [J]. 材料研究学报, 2008(03): 230
|
3 |
Chen X M, Lin Y C, Chen M S. Microstructural evolution of a nickel-based superalloy during hot deformation [J]. Mater. Des., 2015, 77: 41
doi: 10.1016/j.matdes.2015.04.004
|
4 |
Guan Y S, Liu E Z, Guan X R, Zheng Z. Influence of Ru on solidification behavior,microstructure and hardness of Re-free Ni-based equiaxed superalloys with high Cr content [J]. J. Mater. Sci. Technol., 2016, 32(3): 272
|
5 |
Yu R L, Xu X, Wang C S. Effect of GH4169 alloy microstructure on properties [J]. J. Aeronaut. Mater., 1998(02): 25
|
5 |
于荣莉, 徐 晓, 王春生. GH4169合金组织结构对性能的影响 [J]. 航空制造工程, 1998(02): 25
|
6 |
Pradhan S K, Mandal S, Athreya C N. Influence of processing parameters on dynamic recrystallization and the associated annealing twin boundary evolution in a nickel base superalloy [J]. Mater. Sci. Eng. A, 2017(700): 49
|
7 |
Lin Y C, He D G, Chen J, et al. Microstructural evolution and support vector regression model for an aged Ni-based superalloy during two-stage hot forming with stepped strain rates [J]. Mater. Des., 2018(154): 51
|
8 |
Yang K, Zhu Z C, Zhang X J. Hot deformation and dynamic recrystallization behavior of nickel-based alloy 617 [J]. T. Mater. Heat. Treat., 2019, 40(10): 151
|
8 |
杨 康, 祝志超, 张雪姣. 镍基617合金的热变形和动态再结晶行为 [J]. 材料热处理学报, 2019, 40(10): 151
|
9 |
Prasad Y. V. R. K. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242 [J]. Metall. Mater. Trans. A, 1984, 15(10): 1883
doi: 10.1007/BF02664902
|
10 |
Huang Y L, Wang J B, Ling X S. Research development of hot processing map theory [J]. Mater. Rev., 2008, 22(S3): 173
|
10 |
黄有林, 王建波, 凌学士. 热加工图理论的研究进展 [J]. 材料导报, 2008, 22(S3): 173
|
11 |
Wang L, Liu F, Cheng J J. Hot deformation characteristics and processing map analysis for Nickel-based corrosion resistant alloy [J]. J. Alloys Compd., 2015, 623: 69
doi: 10.1016/j.jallcom.2014.10.034
|
12 |
Liu Y C, Zhang H J, Guo Q Y. Microstructure evolution of Inconel 718 superalloy during hot working and its recent development tendency [J]. Acta. Metall. Sin., 2018, 54(11): 1653
doi: 10.11900/0412.1961.2018.00340
|
12 |
刘永长, 张宏军, 郭倩颖. Inconel 718变形高温合金热加工组织演变与发展趋势 [J]. 金属学报, 2018, 54(11): 1653
doi: 10.11900/0412.1961.2018.00340
|
13 |
Luo R, Chen L L, Cheng X N. Thermal deformation and dynamic recrystallization behavior of Inconel 617B superalloy [J]. J. Press. Vessel. Technol., 2020, 37(10): 7
|
13 |
罗 锐, 陈乐利, 程晓农. 高温合金Inconel 617B的热变形及动态再结晶行为 [J]. 压力容器, 2020, 37(10): 7
|
14 |
Wang W. Hot deformation behavior and recrystallization model of GH4169 nickel base superalloy [J]. Mater. Mech. Eng., 2020, 44(09): 87
|
14 |
王 稳. GH4169镍基高温合金的热变形行为与再结晶模型 [J]. 机械工程材料, 2020, 44(09): 87
|
15 |
Shi W, Wang Y, Shao W Z. Processing map of GH4169 alloy during hot plastic deformation [J]. Mater. Sci. Eng. Powder Metall., 2012, 17(03): 281
|
15 |
时 伟, 王 岩, 邵文柱. GH4169合金高温塑性变形的热加工图 [J]. 粉末冶金材料科学与工程, 2012, 17(03): 281
|
16 |
Wang M J. Study on the hot workability of Inconel 740 superalloy and its application in hot extrusion process [D]. Beijing: University of Science and Technology Beijing, 2021
|
16 |
王明佳. Inconel 740合金热加工性能研究及在热挤压工艺中的应用 [D]. 北京: 北京科技大学, 2021
|
17 |
Davies P, Randle V. literature review grain boundary engineering and the role of the interfacial plane [J]. Mater. Sci. Technol., 2001, 17(6): 346
|
18 |
Randle V. Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials [J]. Acta Mater., 1999(47): 4187
|
19 |
Zhang H B. Hot deformation behavior and microstructure evolution of GH99 superalloy [D]. Harbin: Harbin Institute of Technology, 2015
|
19 |
张弘斌. GH99高温合金高温变形行为及组织演化规律研究 [D]. 哈尔滨: 哈尔滨工业大学, 2015
|
20 |
Bai B Z, Yang L Y, Zhao Y F. Exploration of process "isothermal forging+direct aging" for GH4169 alloy [J]. Chin. J. Rare Met., 2002(01): 7
|
20 |
白秉哲, 杨鲁义, 赵耀峰. GH4169合金"等温锻造+直接时效"工艺探讨 [J]. 稀有金属, 2002(01): 7
|
21 |
Yu Y N. Principles of Metallography[M]. Beijing: Metallurgical Industry Press, 2020
|
21 |
余永宁. 金属学原理 [M]. 北京: 冶金工业出版社, 2020
|
22 |
Momeni A, Dehghani K. Characterization of hot deformation behavior of 410 martensitic stainless steel using constitutive equations and processing maps [J]. Mater. Sci. Eng. A, 2010, 527(21-22): 5467
doi: 10.1016/j.msea.2010.05.079
|
23 |
Hans Z. An introduction to thermo mechanics [J]. J. Appl. Mech., 1977, 45(4): 996
|
24 |
Nie Y H, Bai Y G, Li H M. Effect of heating temperature and holding time on grain size of GH4169 alloy [J]. Heavy Castings and Forgings, 2021(03): 37
|
24 |
聂义宏, 白亚冠, 李红梅. 加热温度与保温时间对GH4169合金晶粒度的影响规律研究 [J]. 大型铸锻件, 2021(03): 37
|
25 |
Viswanathan G B, Karthikeyan S, Sarosi P M. Microtwinning during intermediate temperature creep of polycrystalline Ni-based superalloys: mechanisms and modelling [J]. Philos. Mag., 2006, 86(29-31): 4823
doi: 10.1080/14786430600767750
|
26 |
Knowles D M, Chen Q Z. Superlattice stacking fault formation and twinning during creep in γ/γ′ single crystal superalloy CMSX-4 [J]. Mater. Sci. Eng. A, 2003, 340: 88
doi: 10.1016/S0921-5093(02)00172-7
|
27 |
Randle V. Twinning-related grain boundary engineering [J]. Acta Mater., 2004, 52(14): 4067
doi: 10.1016/j.actamat.2004.05.031
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|