Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (3): 211-218    DOI: 10.11901/1005.3093.2021.679
  研究论文 本期目录 | 过刊浏览 |
高温合金GH4169的动态再结晶和组织演化机制
于森1, 陈乐利1, 罗锐1,3(), 袁志钟1, 王爽1, 高佩1,3, 程晓农1
1.江苏大学材料科学与工程学院 镇江 212013
2.南京工程学院 江苏省先进结构材料与应用技术重点实验室 南京 211167
3.江苏银环精密钢管有限公司 宜兴 214203
Dynamic Recrystallization and Microstructure Evolution Mechanism of GH4169 Alloy
YU Sen1, CHEN Leli1, LUO Rui1,3(), YUAN Zhizhong1, WANG Shuang1, GAO Pei1,3, CHENG Xiaonong1
1.School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013, China
2.Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology, Nanjing Institute of Technology, Nanjing 211167, China
3.Jiangsu Yinhuan Precision Steel Tube Co., Ltd., Yixing 214203, China
引用本文:

于森, 陈乐利, 罗锐, 袁志钟, 王爽, 高佩, 程晓农. 高温合金GH4169的动态再结晶和组织演化机制[J]. 材料研究学报, 2023, 37(3): 211-218.
Sen YU, Leli CHEN, Rui LUO, Zhizhong YUAN, Shuang WANG, Pei GAO, Xiaonong CHENG. Dynamic Recrystallization and Microstructure Evolution Mechanism of GH4169 Alloy[J]. Chinese Journal of Materials Research, 2023, 37(3): 211-218.

全文: PDF(16221 KB)   HTML
摘要: 

应用Gleeble热模拟技术、EBSD、SEM和OM系统地研究了高温合金GH4169在温度为1000~1150℃、应变速率为 0.01~1 s-1条件下变形的动态再结晶机制和组织演变规律。结果表明:在1000~1150℃、应变速率为 0.01~1 s-1条件下高温合金GH4169的变形抗力最高可达400 MPa;基于动态材料模型绘制出此合金的功率耗散图和流变失稳图,得到了该合金优化的加工区间变形参数为1020~1070℃和0.03~0.63 s-1。分析GH4169在变形过程中动态再结晶演化规律,明确了动态再结晶晶粒以在原奥氏体晶界处的非连续动态再结晶为主,连续动态再结晶以亚晶持续旋转机制形核。还确定了Σ3n非共格孪晶界演变规律,动态再结晶晶粒的体积分数比越大晶粒越细小Σ3晶界密度越高,动态再结晶晶粒的长大优先于Σ3n非共格孪晶界的形成。

关键词 金属材料高温合金GH4169热变形动态再结晶Σ3n非共格孪晶    
Abstract

The dynamic recrystallization mechanism and microstructure evolution of superalloy GH4169 during isothermal compression by strain rate of 0.01~1 s-1 at temperature within the range of 1000~1150°C were systematically investigated via Gleeble thermal simulation technology, EBSD, SEM and OM. The results show that the maximum deformation resistance of the alloy can reach 400 MPa by the desired deformation parameters. The power dissipation diagram and rheological instability diagram of GH4169 were plotted based on the dynamic material model, and the deformation parameters of 1020°C~1070°C and 0.03~0.63 s-1, which were taken as the optimal processing interval for the GH4169 alloy. The evolution regularity of dynamic recrystallization during the deformation process of GH4169 was analysed. It is clear that the dynamic recrystallization is mainly initiated by the discontinuous dynamic recrystallization at grain boundaries of the original austenite, while the continuous dynamic recrystallization may be due to the nucleation induced through the continuous rotation of sub-grains. The evolution regularity of Σ3n non-coherent twin boundary was determined. The larger the volume fraction of dynamic recrystallization grains, the much smaller the size of grains and the higher the density of Σ3 non-coherent twin boundaries. The growth of dynamic recrystallization grains takes the precedence over the formation of Σ3n non-coherent twin boundary.

Key wordsmetallic materials    superalloy GH4169    thermal deformation    dynamic recrystallization    Σ3n non-coherent twin boundary
收稿日期: 2021-12-07     
ZTFLH:  TG132.3+2  
基金资助:江苏省先进结构材料与应用技术重点实验室开放基金(ASMA202002);中国博士后科学基金(2019M661738)
通讯作者: 罗锐,副教授,luoruiweiyi@163.com,研究方向为高温合金及铝合金的热变形性能
Corresponding author: LUO Rui, Tel: 18796000354, E-mail: luoruiweiyi@163. com
作者简介: 于森,男,1998年生,硕士生
ElementsNiFeCrNbTiAlMo
Mass fraction, %53.2020.2517.593.340.880.562.81
表1  GH4169合金的主要化学成分
图1  GH4169合金的原始组织形貌OM
图2  GH4169合金在不同热变形参数下的真应力-真应变曲线
图3  GH4169合金在ε=0.7时的功率耗散图和流变失稳图
图4  GH4169合金在不同热变形条件下的OM显微组织
图5  GH4169合金不同热变形参数下的EBSD微观组织
图6  GH4169合金在1000℃和0.1 s-1热加工参数下的选区1的IPF图、晶粒的IPF图、A和B选区PF图和晶体学取向差以及DDRX机制示意图
图7  GH4169合金在1000℃和0.1 s-1热加工参数下选区1的IPF图和GND图、1100℃和0.01 s-1热加工参数下选区2的IPF图和KAM图、CDRX机制示意图以及在1100℃和0.01 s-1热加工参数下的GB图
图8  在不同热变形参数下GH4169合金的Σ3n晶界
1 Zhang G Q, Zhang R W, Yang Y R. The microstructure of two premium quality GH4169 superalloy and its effect on stress-rupture properties [J]. J. Mater. Eng., 1991(06): 13
1 张国庆, 张荣武, 杨玉荣. 两种优质GH4169合金的显微组织及其对持久性能的影响 [J]. 材料工程, 1991(06): 13
2 Liu F, Sun W R, Yang S L. Effect of Al on impact properties of GH4169 alloy [J]. Chin. J. Mater. Res., 2008(03): 230
2 刘 芳, 孙文儒, 杨树林. A1对GH4169合金冲击性能的影响 [J]. 材料研究学报, 2008(03): 230
3 Chen X M, Lin Y C, Chen M S. Microstructural evolution of a nickel-based superalloy during hot deformation [J]. Mater. Des., 2015, 77: 41
doi: 10.1016/j.matdes.2015.04.004
4 Guan Y S, Liu E Z, Guan X R, Zheng Z. Influence of Ru on solidification behavior,microstructure and hardness of Re-free Ni-based equiaxed superalloys with high Cr content [J]. J. Mater. Sci. Technol., 2016, 32(3): 272
5 Yu R L, Xu X, Wang C S. Effect of GH4169 alloy microstructure on properties [J]. J. Aeronaut. Mater., 1998(02): 25
5 于荣莉, 徐 晓, 王春生. GH4169合金组织结构对性能的影响 [J]. 航空制造工程, 1998(02): 25
6 Pradhan S K, Mandal S, Athreya C N. Influence of processing parameters on dynamic recrystallization and the associated annealing twin boundary evolution in a nickel base superalloy [J]. Mater. Sci. Eng. A, 2017(700): 49
7 Lin Y C, He D G, Chen J, et al. Microstructural evolution and support vector regression model for an aged Ni-based superalloy during two-stage hot forming with stepped strain rates [J]. Mater. Des., 2018(154): 51
8 Yang K, Zhu Z C, Zhang X J. Hot deformation and dynamic recrystallization behavior of nickel-based alloy 617 [J]. T. Mater. Heat. Treat., 2019, 40(10): 151
8 杨 康, 祝志超, 张雪姣. 镍基617合金的热变形和动态再结晶行为 [J]. 材料热处理学报, 2019, 40(10): 151
9 Prasad Y. V. R. K. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242 [J]. Metall. Mater. Trans. A, 1984, 15(10): 1883
doi: 10.1007/BF02664902
10 Huang Y L, Wang J B, Ling X S. Research development of hot processing map theory [J]. Mater. Rev., 2008, 22(S3): 173
10 黄有林, 王建波, 凌学士. 热加工图理论的研究进展 [J]. 材料导报, 2008, 22(S3): 173
11 Wang L, Liu F, Cheng J J. Hot deformation characteristics and processing map analysis for Nickel-based corrosion resistant alloy [J]. J. Alloys Compd., 2015, 623: 69
doi: 10.1016/j.jallcom.2014.10.034
12 Liu Y C, Zhang H J, Guo Q Y. Microstructure evolution of Inconel 718 superalloy during hot working and its recent development tendency [J]. Acta. Metall. Sin., 2018, 54(11): 1653
doi: 10.11900/0412.1961.2018.00340
12 刘永长, 张宏军, 郭倩颖. Inconel 718变形高温合金热加工组织演变与发展趋势 [J]. 金属学报, 2018, 54(11): 1653
doi: 10.11900/0412.1961.2018.00340
13 Luo R, Chen L L, Cheng X N. Thermal deformation and dynamic recrystallization behavior of Inconel 617B superalloy [J]. J. Press. Vessel. Technol., 2020, 37(10): 7
13 罗 锐, 陈乐利, 程晓农. 高温合金Inconel 617B的热变形及动态再结晶行为 [J]. 压力容器, 2020, 37(10): 7
14 Wang W. Hot deformation behavior and recrystallization model of GH4169 nickel base superalloy [J]. Mater. Mech. Eng., 2020, 44(09): 87
14 王 稳. GH4169镍基高温合金的热变形行为与再结晶模型 [J]. 机械工程材料, 2020, 44(09): 87
15 Shi W, Wang Y, Shao W Z. Processing map of GH4169 alloy during hot plastic deformation [J]. Mater. Sci. Eng. Powder Metall., 2012, 17(03): 281
15 时 伟, 王 岩, 邵文柱. GH4169合金高温塑性变形的热加工图 [J]. 粉末冶金材料科学与工程, 2012, 17(03): 281
16 Wang M J. Study on the hot workability of Inconel 740 superalloy and its application in hot extrusion process [D]. Beijing: University of Science and Technology Beijing, 2021
16 王明佳. Inconel 740合金热加工性能研究及在热挤压工艺中的应用 [D]. 北京: 北京科技大学, 2021
17 Davies P, Randle V. literature review grain boundary engineering and the role of the interfacial plane [J]. Mater. Sci. Technol., 2001, 17(6): 346
18 Randle V. Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials [J]. Acta Mater., 1999(47): 4187
19 Zhang H B. Hot deformation behavior and microstructure evolution of GH99 superalloy [D]. Harbin: Harbin Institute of Technology, 2015
19 张弘斌. GH99高温合金高温变形行为及组织演化规律研究 [D]. 哈尔滨: 哈尔滨工业大学, 2015
20 Bai B Z, Yang L Y, Zhao Y F. Exploration of process "isothermal forging+direct aging" for GH4169 alloy [J]. Chin. J. Rare Met., 2002(01): 7
20 白秉哲, 杨鲁义, 赵耀峰. GH4169合金"等温锻造+直接时效"工艺探讨 [J]. 稀有金属, 2002(01): 7
21 Yu Y N. Principles of Metallography[M]. Beijing: Metallurgical Industry Press, 2020
21 余永宁. 金属学原理 [M]. 北京: 冶金工业出版社, 2020
22 Momeni A, Dehghani K. Characterization of hot deformation behavior of 410 martensitic stainless steel using constitutive equations and processing maps [J]. Mater. Sci. Eng. A, 2010, 527(21-22): 5467
doi: 10.1016/j.msea.2010.05.079
23 Hans Z. An introduction to thermo mechanics [J]. J. Appl. Mech., 1977, 45(4): 996
24 Nie Y H, Bai Y G, Li H M. Effect of heating temperature and holding time on grain size of GH4169 alloy [J]. Heavy Castings and Forgings, 2021(03): 37
24 聂义宏, 白亚冠, 李红梅. 加热温度与保温时间对GH4169合金晶粒度的影响规律研究 [J]. 大型铸锻件, 2021(03): 37
25 Viswanathan G B, Karthikeyan S, Sarosi P M. Microtwinning during intermediate temperature creep of polycrystalline Ni-based superalloys: mechanisms and modelling [J]. Philos. Mag., 2006, 86(29-31): 4823
doi: 10.1080/14786430600767750
26 Knowles D M, Chen Q Z. Superlattice stacking fault formation and twinning during creep in γ/γ′ single crystal superalloy CMSX-4 [J]. Mater. Sci. Eng. A, 2003, 340: 88
doi: 10.1016/S0921-5093(02)00172-7
27 Randle V. Twinning-related grain boundary engineering [J]. Acta Mater., 2004, 52(14): 4067
doi: 10.1016/j.actamat.2004.05.031
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.