Please wait a minute...
材料研究学报  2024, Vol. 38 Issue (10): 759-767    DOI: 10.11901/1005.3093.2023.561
  研究论文 本期目录 | 过刊浏览 |
316L不锈钢表面Fe-Al渗层的制备及其机理
文锋1, 张东勋1(), 王韡1, 滕心跃2, 楚鑫新1
1.中国科学院上海应用物理研究所 上海 201800
2.上海应用技术大学化学与环境工程学院 上海 201400
Preparation and Formation Mechanism of Fe-Al Coating on 316L Stainless Steel by Pack Cementation Aluminizing
WEN Feng1, ZHANG Dongxun1(), WANG Wei1, TENG Xinyue2, CHU Xinxin1
1.Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
2.College of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201400, China
引用本文:

文锋, 张东勋, 王韡, 滕心跃, 楚鑫新. 316L不锈钢表面Fe-Al渗层的制备及其机理[J]. 材料研究学报, 2024, 38(10): 759-767.
Feng WEN, Dongxun ZHANG, Wei WANG, Xinyue TENG, Xinxin CHU. Preparation and Formation Mechanism of Fe-Al Coating on 316L Stainless Steel by Pack Cementation Aluminizing[J]. Chinese Journal of Materials Research, 2024, 38(10): 759-767.

全文: PDF(11484 KB)   HTML
摘要: 

使用低含量的NH4Cl活化剂,用粉末包埋法在不同温度对316L不锈钢渗铝不同时间在其表面制备了连续致密的Fe-Al渗层,使用金相显微镜(OM)、X射线衍射(XRD)、扫描电镜(SEM)和能谱分析(EDS)等手段表征了Fe-Al渗层的表面形貌、截面结构以及物相组成,研究了渗铝温度和渗铝时间的影响。结果表明,在不同温度渗铝,渗层主要由Fe2Al5相和FeAl3相组成且呈多层结构,渗层厚度随着渗铝温度的提高而增大;在650~750℃渗铝,渗层呈锯齿状结构嵌入基底,随着渗铝温度的提高齿状形貌特征逐渐消失且渗层表面质量变差。随着渗铝时间的增加,渗层的厚度随之增加但是物相组成不变。结合渗层成分的热力学稳定性,分析了渗层的形成过程。在反应初期已经在基体表面生成了FeAl3相,但是Fe2Al5相一旦开始生成其生长速率就远高于FeAl3相而使其生长受到抑制;而Fe3Al相,只有在温度低于422℃时才开始生成。在动力学基础上建立了渗铝的动力学模型并计算出其扩散激活能。

关键词 金属材料阻氚涂层包埋渗铝法Fe-Al渗层微观结构    
Abstract

The pack cementation aluminizing method is a common process for preparing tritium barrier coatings. A dense and continuous Fe-Al coating can be prepared on the surface of stainless steels, while the microstructure of the aluminide layer has an important effect on the barrier properties of the top Al2O3 film formed on the coating. Herein, Fe-Al aluminide coating was prepared on 316L stainless steel via pack cementation method with NH4Cl as activator. The surface, cross-sectional morphology, phase composition of the Fe-Al coating was characterized by means of optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The results show that the aluminized coatings prepared at different temperatures are mainly composed of Fe2Al5 and FeAl3. The thickness of the aluminized coating increases with the increase of temperature, and shows a multi-layered structure. When the aluminizing temperature is between 650oC and 750oC, the aluminizing coating shows a serrated structure embedded in the substrate. As the temperature increases, the serrated morphology gradually disappears and the surface quality of the aluminizing coating deteriorates; With the increasing aluminizing time, the thickness of the aluminized coating gradually increases, but does not affect its phase structure. In addition, the formation process of the aluminizing coating was analyzed in terms of the thermodynamics stabilities of its structure and conponents. The FeAl3 phase was formed on the surface of the substrate at the initial stage of the reaction, however, the growth rate of the Fe2Al5 phase was much higher than that of the FeAl3 phase, thereby, the former will inhibit the growth of the later once the former emerges at the initial stage, which led to the growth of the FeAl3 phase was suppressed. The Fe3Al phase begins to form only when the temperature is lower than 422oC. On the basis of kinetics, a kinetic model of aluminizing process was established and the diffusion activation energy was calculated.

Key wordsmetallic materials    tritium barrier coating    pack aluminizing    Fe-Al layer    microstructure
收稿日期: 2023-11-24     
ZTFLH:  TL341  
基金资助:国家自然科学基金(11935011)
通讯作者: 张东勋,研究员,zhangdongxun@sinap.ac.cn,研究方向为氢同位素在结构材料中的扩散渗透
Corresponding author: ZHANG Dongxun, Tel: 18616354512, E-mail: zhangdongxun@sinap.ac.cn
作者简介: 文 锋,男,1996年生,助理工程师
ElementCrNiMoMnSiCFe
Content16.0~18.010.0~14.02.0~3.0≤2.0≤1.0≤0.03Bal.
表1  316L不锈钢合金的成分(质量分数,%)
Sample1234567891011
Temperature / oC600650700750750750750750800850900
Time / h555135710555
表2  包埋渗铝实验方案
图1  在不同渗铝温度制备的Fe-Al渗层的XRD谱
图2  在不同渗铝温度制备的试样的表面组织形貌金相照片
图3  在不同渗铝温度制备的渗层的截面形貌SEM照片
图4  在900℃制备的渗层截面形貌的SEM照片
图5  不同渗铝时间制备的Fe-Al渗层的XRD谱
Temperature / oCSpotElements / %, atom fraction
AlFeCrNi
600156.1219.8019.464.62
2059.0618.9210.76
900160.0420.625.292.50
253.0123.625.636.63
340.9431.278.579.17
4056.1214.5710.56
表3  对图3a和图4a中各点元素成分的扫描
图6  不同渗铝时间制备的渗层截面形貌的SEM照片和EDS点扫描位置
Time / hSpotElements / %, atom fraction
AlFeCrNi
1164.7720.727.626.90
260.9126.357.904.84
357.0025.6811.435.89
40.6466.2121.0012.14
10163.9622.046.917.08
259.7731.788.390.06
355.1620.3824.170.29
413.2256.3621.459.03
表4  对应图6a,d中各点扫描的元素成分组成
图7  Fe-Al化合物的吉布斯能ΔG随温度T的变化
图8  多层相结构的铁铝合金渗层的形成过程模型
图9  渗层厚度与渗铝温度的关系
图10  渗层厚度与渗铝时间之间的关系
1 He D, Li S, Liu X, et al. Preparation of Cr2O3 film by MOCVD as hydrogen permeation barrier [J]. Fusion Eng. Des., 2014, 89(1): 35
2 Wang X, Ran G, Wang H, et al. Current progress of tritium fuel cycle technology for CFETR [J]. J. Fusion Energy, 2018, 38(1): 125
3 Ushida H, Katayama K, Matsuura H, et al. Tritium permeation behavior through pyrolytic carbon in tritium production using high-temperature gas-cooled reactor for fusion reactors [J]. Nucl. Mater. Energy, 2016, 9(C): 524
4 Tamura M, Eguchi T. Nanostructured thin films for hydrogen-permeation barrier [J]. J. Vac. Sci. Technol., A, 2015, 33(4): 041503
5 Chikada T, Shimada M, Pawelko R J, et al. Tritium permeation experiments using reduced activation ferritic/martensitic steel tube and erbium oxide coating [J]. Fusion Eng. Des., 2014, 89(7-8): 1402
6 Zhang G, Lu Y, Wang X. Hydrogen interactions with intrinsic point defects in hydrogen permeation barrier of α-Al2O3: a first-principles study [J]. Phys. Chem. Chem. Phys., 2014, 16(33): 17523
7 Zhang G K, Yang F L, Lu G D, et al. Fabrication of Al2O3/FeAl coating as tritium permeation barrier on tritium operating component on quasi-CFETR scale [J]. J. Fusion Energy, 2018, 37(6): 317
8 Majumdar S, Paul B, Chakraborty P, et al. Formation of Al2O3/FeAl coatings on a 9Cr-1Mo steel, and corrosion evaluation in flowing Pb-17Li loop [J]. J. Nucl. Mater., 2017, 486(4): 60
9 Chen J, Li X, Hua P, et al. Growth of inter-metallic compound layers on CLAM steel by HDA and preparation of permeation barrier by oxidation [J]. Fusion Eng. Des., 2017, 125(12): 57
10 Choudhary R K, Mishra S C, Mishra P, et al. Mechanical and tribological properties of crystalline aluminum nitride coatings deposited on stainless steel by magnetron sputtering [J]. J. Nucl. Mater., 2015, 466(11): 69
11 Wang J, Li Q, Xiang Q Y, et al. Performances of AlN coatings as hydrogen isotopes permeation barriers [J]. Fusion Eng. Des., 2016, 102(1): 94
12 Li H, Ke Z, Li J, et al. An effective low-temperature strategy for sealing plasma sprayed Al2O3-based coatings [J]. J. Eur. Ceram. Soc., 2018, 38(4): 1871
13 Xiang X, Wang X, Zhang G, et al. Preparation technique and alloying effect of aluminide coatings as tritium permeation barriers: A review [J]. Int. J. Hydrogen Energy, 2015, 40(9): 3697
14 Cao W, Ge S, Song J, et al. A deuterium permeation barrier by hot-dipping aluminizing on AISI 321 steel [J]. Int. J. Hydrogen Energy, 2016, 41(12): 23125
15 Zhan Q, Yang H G, Zhao W W, et al. Characterization of the alumina film with cerium doped on the iron-aluminide diffusion coating [J]. J. Nucl. Mater., 2013, 442(1-3): S603
16 Liang C F, Liu W, Xia X B, et al. An Al2O3/Ni-Al tritium permeation barrier coating for the potential application in thorium-based molten salt reactor [J]. Vacuum, 2023, 213: 112110
17 Hu L, Zhang G K, Tang T. Research progress on formation mechanism and low temperature preparation technology of Al2O3 film on surface of Fe-Al/Al2O3 tritium permeation barrier [J]. Mater. Mech. Eng., 2019, 43(6): 1
17 胡 立, 张桂凯, 唐 涛. Fe-Al/Al2O3阻氚涂层表面Al2O3薄膜形成机制与低温制备技术的研究进展 [J]. 机械工程材料, 2019, 43(6): 1
18 Liu J F, Wang Z, Ding Y S, et al. Bonding properties of Fe/Al2O3 ceramic gradient coating [J]. Chin. J. Mater. Res., 2010, 24(4): 5
18 刘健飞, 王 志, 丁寅森 等. Fe/Al2O3陶瓷梯度涂层的结合性能 [J]. 材料研究学报, 2010, 24(4): 5
19 Liang C F, Liu W, Xia X B, et al. Preparation of α-Al2O3/NiAl multilayer coatings on GH3535 superalloy surface by pack cementation and subsequent in situ oxidation [J]. Vacuum, 2022, 203: 111288
20 Zhu L, Zheng L, Xie H, et al. Design and properties of Fe-Al/Al2O3/TiO2 composite tritium-resistant coating prepared through pack cementation and sol-gel method [J]. Mater. Today Commun., 2021, 26(3): 101848
21 Pérez F J, Hierro M P, Trilleros J A, et al. Iron aluminide coatings on ferritic steels by CVD-FBR technology [J]. Intermetallics, 2006, 14(7): 811
22 Sánchez L, Bolívar F J, Hierro M P, et al. Effects of reactive gaseous mixture and time on the growth rate and composition of aluminium diffusion coatings by CVD-FBR on 12Cr-ferritic steel [J]. Surf. Coat. Technol., 2007, 201(18): 7626
23 Wang Y Q, Zhang Y, Wilson D A. Formation of aluminide coatings on ferritic-martensitic steels by a low-temperature pack cementation process [J]. Surf. Coat. Technol., 2010, 204(16-17): 2737
24 Majumdar S, Bhaskar P, Kain V, et al. Formation of Al2O3/Fe-Al layers on SS316 surface by pack aluminizing and heat treatment [J]. Mater. Chem. Phys., 2017, 190(4): 31
25 Dong Y, Sun Y H, He F Y. Formation mechanism of multilayer aluminide coating on 316L stainless steel by low-temperature pack cementation [J]. Surf. Coat. Technol., 2019, 375: 833
26 Kobayashi S, Yakou T. Control of intermetallic compound layers at interface between steel and aluminum by diffusion-treatment [J]. Mater. Sci. Eng. A, 2002, 338(1-2): 44
27 Li N N, Chen Y, Chen X, et al. Preparation method and diffusion mechanism of Fe-Al coating on Q235 low carbon steel by pack aluminizing [J]. Chin. J. Mater. Res., 2021, 35(8): 572
doi: 10.11901/1005.3093.2020.449
27 李宁宁, 陈 旸, 陈 希 等. 包埋渗铝法制备 Fe-Al渗层及其扩散机制 [J]. 材料研究学报, 2021, 35(8): 572
doi: 10.11901/1005.3093.2020.449
28 Sun Y, Dong J, Zhao P, et al. Formation and phase transformation of aluminide coating prepared by low-temperature aluminizing process [J]. Surf. Coat. Technol., 2017, 330: 234
29 Xiang Z D, Datta P K. Pack aluminisation of low alloy steels at te-mperatures below 700oC [J]. Surf. Coat. Technol., 2004, 184(1): 108
30 Wang J, Wu D J, Zhu C Y, et al. Low temperature pack aluminising kinetics of nickel electroplated on creep resistant ferritic steel [J]. Surf. Coat. Technol., 2013, 236: 135
31 Yang Y, Zhang F, He J, et al. Microstructure, growth kinetics and mechanical properties of interface layer for roll bonded aluminum-steel clad sheet annealed under argon gas protection [J]. Vaccum, 2018, 151: 189
32 Wang J, Liu C N, Liang C F, et al. Formation and kinetics of aluminide coating on 316L stainless steel by pack cementation process [J]. Nucl. Tech., 2023, 46(3): 8
32 王 军, 刘超男, 梁超飞 等. 316L不锈钢包埋渗铝涂层制备及动力学研究 [J]. 核技术, 2023, 46(3): 8
[1] 汪小锋, 谭蔚, 冯光明, 刘吉波, 刘先斌, 鲁涵. Al-Mg-Si合金中的富铁相对其力学性能的影响[J]. 材料研究学报, 2024, 38(9): 701-710.
[2] 邵霞, 鲍梦凡, 陈诗洁, 林娜, 檀杰, 冒爱琴. 尖晶石型无钴(Cr0.2Fe0.2Mn0.2Ni0.2X0.2)3O4 高熵氧化物的制备及其储锂性能[J]. 材料研究学报, 2024, 38(9): 680-690.
[3] 尹一峰, 卢正冠, 徐磊, 吴杰. GH4099合金粉末的热等静压成形和薄壁筒体的制造[J]. 材料研究学报, 2024, 38(9): 669-679.
[4] 李培跃, 张明辉, 孙文韬, 鲍志豪, 高琦, 王延枝, 牛龙. CeLaAl-Zn合金微观组织和力学性能的影响[J]. 材料研究学报, 2024, 38(9): 651-658.
[5] 岑耀东, 计春娇, 包喜荣, 王晓东, 陈林, 董瑞. 珠光体重轨钢疲劳裂纹尖端的应力应变场[J]. 材料研究学报, 2024, 38(9): 711-720.
[6] 张巍, 张杰. B4C-Al2O3 复合陶瓷的增韧机理[J]. 材料研究学报, 2024, 38(8): 614-620.
[7] 刘庆澳, 张伟红, 王志远, 孙文儒. K4169合金的高温低周疲劳行为[J]. 材料研究学报, 2024, 38(8): 621-631.
[8] 娄伟冬, 赵海东, 王果. 在铝液中热循环H13钢的软化行为[J]. 材料研究学报, 2024, 38(8): 593-604.
[9] 刘硕, 张鹏, 王斌, 汪开忠, 许自宽, 胡芳忠, 段启强, 张哲峰. 高速列车车轴DZ2钢的强韧性关系和低温脆性[J]. 材料研究学报, 2024, 38(8): 561-568.
[10] 王金龙, 王慧明, 李应举, 张宏毅, 吕晓仁. 在往复摩擦过程中冷喷涂Al基复合涂层孔隙的开裂行为[J]. 材料研究学报, 2024, 38(7): 481-489.
[11] 原新忠, 王存景, 姚鹏, 李琼, 马志华, 李鹏发. NO共掺杂碳电极材料的制备及其组装的超级电容器的性能[J]. 材料研究学报, 2024, 38(7): 529-536.
[12] 杨溥, 邓海龙, 康贺铭, 刘杰, 孔建行, 孙宇凡, 于欢, 陈雨. 钛合金的超高周疲劳滑移-解理竞争失效机制[J]. 材料研究学报, 2024, 38(7): 537-548.
[13] 汪丽佳, 许君怡, 胡励, 苗天虎, 詹莎. 深冷处理对双峰分离非基面织构AZ31镁合金板材室温力学性能的影响[J]. 材料研究学报, 2024, 38(7): 499-507.
[14] 彭文飞, 黄巧东, Moliar Oleksandr, 董超琪, 汪小锋. 热处理对新型Ti-6Al-2Mo-2V-3Nb-2Fe-1Zr合金力学性能的影响[J]. 材料研究学报, 2024, 38(7): 519-528.
[15] 陈诗洁, 鲍梦凡, 林娜, 杨海琴, 冒爱琴. Zn含量对岩盐型高熵氧化物储锂性能的影响[J]. 材料研究学报, 2024, 38(7): 508-518.