Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (1): 13-20    DOI: 10.11901/1005.3093.2021.249
  研究论文 本期目录 | 过刊浏览 |
Mg-Al-Ca-Mn-Zn变形镁合金的组织和力学性能
刘洋1,2, 康锐3, 冯小辉1, 罗天骄1, 李应举1, 冯建广1,2, 曹天慧1, 黄秋燕1(), 杨院生1
1.中国科学院金属研究所 沈阳 110016
2.中国科学技术大学材料科学与工程学院 合肥 230026
3.东北大学材料学院材料各向异性与织构教育部重点实验室 沈阳 110819
Microstructure and Mechanical Properties of Extruded Mg-Alloy Mg-Al-Ca-Mn-Zn
LIU Yang1,2, KANG Rui3, FENG Xiaohui1, LUO Tianjiao1, LI Yingju1, FENG Jianguang1,2, CAO Tianhui1, HUANG Qiuyan1(), YANG Yuansheng1
1.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
3.Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
引用本文:

刘洋, 康锐, 冯小辉, 罗天骄, 李应举, 冯建广, 曹天慧, 黄秋燕, 杨院生. Mg-Al-Ca-Mn-Zn变形镁合金的组织和力学性能[J]. 材料研究学报, 2022, 36(1): 13-20.
Yang LIU, Rui KANG, Xiaohui FENG, Tianjiao LUO, Yingju LI, Jianguang FENG, Tianhui CAO, Qiuyan HUANG, Yuansheng YANG. Microstructure and Mechanical Properties of Extruded Mg-Alloy Mg-Al-Ca-Mn-Zn[J]. Chinese Journal of Materials Research, 2022, 36(1): 13-20.

全文: PDF(21868 KB)   HTML
摘要: 

将Mg-1Al-0.4Ca-0.5Mn-0.2Zn(质量分数,%)合金在不同温度挤压,研究其微观组织和力学性能。结果表明:在260℃和290℃挤压的合金均发生不完全动态再结晶,再结晶晶粒尺寸分别为0.75 μm和1.2 μm。二者均具有高密度的G.P.区和球状纳米析出相,能抑制位错运动并为动态再结晶提供丰富的形核位点。沿晶界析出的纳米相能抑制晶界的运动和限制再结晶晶粒的生长,从而生成尺寸为0.75 μm的超细晶粒。随着挤压温度从260℃提高到290℃,合金的屈服强度从322 MPa提高到343 MPa,伸长率分别为13.4%和13%,没有明显的变化。挤压温度的提高促进了动态析出和动态回复,使合金中积累了高密度纳米盘状相和球状相,大量位错通过动态回复转变成小角度晶界,将未再结晶区域细分成密集的层状亚晶粒,二者均能抑制新位错的运动。这些因素,是在290℃挤压后的合金仍具有较高屈服强度和塑性没有明显变化的主要原因。纳米相对位错的钉扎在一定程度上限制了动态回复的发生,使合金中仍存在较高数量的残余位错,也有利于提高其屈服强度。

关键词 金属材料镁合金晶粒细化纳米相动态再结晶    
Abstract

The microstructure and mechanical properties of extruded Mg-alloy of Mg-1Al-0.4Ca-0.5Mn-0.2Zn (mass fraction, %) were systematically investigated. As indicated by the results, the incomplete dynamic recrystallization occurred for the alloys extruded at 260℃ (denoted as AXMZ1000-260) and 290°C (AXMZ1000-290) with recrystallized grain sizes of 0.75 μm and 1.2 μm, respectively. The two alloys have high-density G.P. regions and spherical nano-phases, which can effectively inhibit the dislocation motion and provide abundant nucleation sites for dynamic recrystallization. Moreover, the nano-phases precipitated along grain boundaries can restrain the migration of grain boundary and restrict the growth of DRXed grains, which results in the ultrafine grains with a size of 0.75 μm in AXMZ1000-260 alloy. The strength of the alloy decreases with the increase of extrusion temperature, and the change of elongation is not obvious. The yield strength and elongation of alloys extruded at 260℃ and 290℃ are approximately 322 MPa and 343 MPa, as well as 13.4% and 13%, respectively. The dynamic precipitation and recovery process are promoted by the increasing extrusion temperature, and a high-density G.P. zones and spherical nano-phases are accumulated in the alloy. At the same time, many dislocations are transformed into LAGBs by dynamic recovery, and the unDRXed areas are subdivided into dense lamellar subgrains. The nano-phases and LAGBs can effectively hinder the newly generated dislocation motion, which is the major reason that the alloy extruded at 290℃ still have a high yield strength and the change of ductility is not obvious. Furthermore, TEM observations show that the pinning effect of G.P. zones can impede the dynamic recovery to certain extent, resulting in a high number of residual dislocations in the alloy, which is conducive to the improvement of the yield strength.

Key wordsmetallic materials    Mg alloy    grain refinement    nano-phase    dynamic recrystallization
收稿日期: 2021-04-16     
ZTFLH:  TG146.22  
基金资助:国家自然科学基金(51701211);山东省重点研发计划(2019JZZY020329)
作者简介: 刘洋,男,1996年生,硕士生
图1  挤压态AXMZ1000合金的拉伸应力-应变曲线
Alloyσs / MPaσb / MPaδ / %
AXMZ1000-260343 ± 1349 ± 413.4 ± 2.2
AXMZ1000-290322 ± 3328 ± 313.0 ± 3.0
表1  AXMZ1000合金的力学性能
图2  挤压态AXMZ1000合金的金相照片
图3  挤压态AXMZ1000-260合金的TEM明场像
图4  挤压态AXMZ1000-290合金的TEM明场像
图5  AXMZ1000-260合金的STEM明场像
图6  AXMZ1000-260合金的STEM明场像和EDS面扫分析
图7  AXMZ1000-260合金的STEM明场像和EDS面扫分析
1 Zeng Z, Stanford N, Davies C H J, et al. Magnesium extrusion alloys: a review of developments and prospects [J]. International Materials Reviews, 2019, 64(1): 27
2 Peng P, She J, Tang A, et al. Novel continuous forging extrusion in a one-step extrusion process for bulk ultrafine magnesium alloy [J]. Materials Science and Engineering: A, 2019, 764.
3 Song J, She J, Chen D, et al. Latest research advances on magnesium and magnesium alloys worldwide [J]. Journal of Magnesium Alloys, 2020, 8(1): 1
4 Xu T, Yang Y, Peng X, et al. Overview of advancement and development trend on magnesium alloy [J]. Journal of Magnesium Alloys, 2019, 7(3): 536
5 Xu X, Chen X, Du W, et al. Effect of Nd on microstructure and mechanical properties of as-extruded Mg-Y-Zr-Nd alloy [J]. Journal of materials science technology, 2017, 33(9): 926
6 Guan K, Yang Q, Bu F, et al. Microstructures and mechanical properties of a high-strength Mg-3.5 Sm-0.6 Zn-0.5 Zr alloy [J]. Materials Science Engineering: A, 2017, 703: 97
7 Yu Z, Xu C, Meng J, et al. Microstructure evolution and mechanical properties of a high strength Mg-11.7Gd-4.9Y-0.3Zr (wt%) alloy prepared by pre-deformation annealing, hot extrusion and ageing [J]. Materials Science Engineering: A, 2017, 703: 348
8 Li J, Jin L, Dong J, et al. Effects of microstructure on fracture toughness of wrought Mg-8Gd-3Y-0.5 Zr alloy [J]. Materials Characterization, 2019, 157: 109899.
9 Xu C, Nakata T, Fan G-H, et al. Effect of Partially Substituting Ca with Mischmetal on the Microstructure and Mechanical Properties of Extruded Mg-Al-Ca-Mn-Based Alloys [J]. Acta Metallurgica Sinica, 2019, 32(2): 205
10 Cheng R, Li M, Du S, et al. Effects of single-pass large-strain rolling on microstructure and mechanical properties of Mg-Al-Ca alloy sheet [J]. Materials Science Engineering: A, 2020, 786: 139332.
11 Zhang A, Kang R, Wu L, et al. A new rare-earth-free Mg-Sn-Ca-Mn wrought alloy with ultra-high strength and good ductility [J]. Materials Science Engineering: A, 2019, 754: 269
12 Li J, Zhang A, Pan H, et al. Effect of extrusion speed on microstructure and mechanical properties of the Mg-Ca binary alloy [J]. Journal of Magnesium Alloys, 2020.
13 Zhang B, Wang Y, Geng L, et al. Effects of calcium on texture and mechanical properties of hot-extruded Mg-Zn-Ca alloys [J]. Materials Science Engineering: A, 2012, 539: 56
14 Pan H, Qin G, Huang Y, et al. Development of low-alloyed and rare-earth-free magnesium alloys having ultra-high strength [J]. Acta Materialia, 2018, 149: 350
15 Pan H, Yang C, Yang Y, et al. Ultra-fine grain size and exceptionally high strength in dilute Mg-Ca alloys achieved by conventional one-step extrusion [J]. Materials Letters, 2019, 237: 65
16 Jayaraj J, Mendis C L, Ohkubo T, et al. Enhanced precipitation hardening of Mg-Ca alloy by Al addition [J]. Scripta Materialia, 2010, 63(8): 831
17 Oh-ishi K, Watanabe R, Mendis C, et al. Age-hardening response of Mg-0.3 at.% Ca alloys with different Zn contents [J]. Materials Science Engineering: A, 2009, 526(1-2): 177
18 She J, Zhou S, Peng P, et al. Improvement of strength-ductility balance by Mn addition in Mg-Ca extruded alloy [J]. Materials Science Engineering: A, 2020, 772: 138796.
19 Peng P, He X, She J, et al. Novel low-cost magnesium alloys with high yield strength and plasticity [J]. Materials Science Engineering: A, 2019, 766: 138332.
20 Cihova M, Schaublin R, Hauser L B, et al. Rational design of a lean magnesium-based alloy with high age-hardening response [J]. Acta Materialia, 2018, 158: 214
21 Zeng Z R, Zhu Y M, Liu R L, et al. Achieving exceptionally high strength in Mg 3Al 1Zn-0.3Mn extrusions via suppressing intergranular deformation [J]. Acta Materialia, 2018, 160: 97
22 Agnew S, Capolungo L, Calhoun C. Connections between the basal I1 "growth" fault and <c+a> dislocations [J]. Acta Materialia, 2015, 82: 255
23 Gong M, Liu G, Wang J, et al. Atomistic simulations of interaction between basal <a> dislocations and three-dimensional twins in magnesium [J]. Acta Materialia, 2018, 155: 187
24 Yu H, Xin Y, Wang M, et al. Hall-Petch relationship in Mg alloys: a review [J]. J Journal of Materials Science Technology, 2018, 34(2): 248
25 Razavi S, Foley D, Karaman I, et al. Effect of grain size on prismatic slip in Mg-3Al-1Zn alloy [J]. Scripta Materialia, 2012, 67(5): 439
26 Wang F, Bhattacharyya J J, Agnew S R. Effect of precipitate shape and orientation on Orowan strengthening of non-basal slip modes in hexagonal crystals, application to magnesium alloys [J]. Materials Science Engineering: A, 2016, 666: 114
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.