|
|
镍基高温合金GH3536带箔材的再结晶与晶粒长大行为 |
王昊1,2, 崔君军1,2, 赵明久1,2( ) |
1.中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016 2.中国科学技术大学材料科学与工程学院 沈阳 110016 |
|
Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536 |
WANG Hao1,2, CUI Junjun1,2, ZHAO Mingjiu1,2( ) |
1.CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
Hao WANG,
Junjun CUI,
Mingjiu ZHAO.
Recrystallization and Grain Growth Behavior for Strip and Foil of Ni-based Superalloy GH3536[J]. Chinese Journal of Materials Research, 2023, 37(7): 535-542.
1 |
Lai G Y. An investigation of the thermal stability of a commercial Ni-Cr-Fe-Mo alloy (hastelloy alloy X) [J]. Metall. Trans., 1978, 9A: 827
|
2 |
Aghaie-Khafri M, Golarzi N. Forming behavior and workability of Hastelloy X superalloy during hot deformation [J]. Mater. Sci. Eng., 2008, 486A: 641
|
3 |
Osada T, Nagashima N, Gu Y F, et al. Factors contributing to the strength of a polycrystalline nickel-cobalt base superalloy [J]. Scripta Mater., 2011, 64(9): 892
doi: 10.1016/j.scriptamat.2011.01.027
|
4 |
Pollock T M, Tin S. Nickel-based superalloys for advanced turbine engines: chemistry, microstructure and properties [J]. J. Propul. Power., 2006, 22(2): 361
|
5 |
Williams J C, Starke E A. Progress in structural materials for aerospace systems [J]. Acta Mater., 2003, 51(19): 5775
doi: 10.1016/j.actamat.2003.08.023
|
6 |
Chen W, Zhang Y, Ding Y, et al. Size effect of tensile property for ultrathin 304 stainless steel [J]. Int. J. Plast. Eng., 2014, 21(6): 71
|
7 |
Guo B, Zhou J, Shan D B, et al. Size effects of yield strength of brass foil in tensile test [J]. Acta Metall. Sin., 2008, 44(4): 419
|
8 |
Stölken J S, Evans A G. A microbend test method for measuring the plasticity length scale [J]. Acta Mater., 1998. 46(14): 5109
doi: 10.1016/S1359-6454(98)00153-0
|
9 |
Li H Z, Dong X H, Wang Q, et al. Size effects of CuZn37 brass foil in microforming [J]. Mater. Sci. Technol., 2011, 19(4): 15
|
9 |
李河宗, 董湘怀, 王 倩 等. CuZn37黄铜板料微塑性成形中的尺寸效应研究 [J]. 材料科学与工艺, 2011, 19 (4):15
|
10 |
Fu H H, Benson D J, Meyers M A. Analytical and computational description of effect of grain size on yield stress of metals [J]. Acta Mater., 2001, 49(13): 2567
doi: 10.1016/S1359-6454(01)00062-3
|
11 |
Lederer M, Gröger V, Khatibi G, et al. Size dependency of mechanical properties of high purity aluminium foils [J]. Mater. Sci. Eng., 2010, 527A(3) : 590
|
12 |
Mahabunphachai S, Koç M. Investigation of size effects on material behavior of thin sheet metals using hydraulic bulge testing at micro/meso-scales [J]. Int. J. Mach. Tools Manuf., 2008, 48(9): 1014
doi: 10.1016/j.ijmachtools.2008.01.006
|
13 |
James L A. The effect of grain size upon the fatigue-crack propagation behavior of alloy 718 under hold-time cycling at elevated temperature [J]. Eng. Fract. Mech., 1986, 25(3): 305
doi: 10.1016/0013-7944(86)90127-X
|
14 |
Jiang R, Everitt S, Lewandowski M, et al. Grain size effects in a Ni-based turbine disc alloy in the time and cycle dependent crack growth regimes [J]. Int. J. Fatigue, 2014, 62: 217
doi: 10.1016/j.ijfatigue.2013.07.014
|
15 |
Zhao X Y, Liu Y, Wang Y, et al. Recrystallization behaviors of 316L stainless steel fiber with different diameters [J]. Mater. Sci. Eng. Powder Metall., 2013, 18(5): 631
|
15 |
赵秀云, 刘 咏, 王 岩 等. 不同丝径316L不锈钢纤维的再结晶行为 [J]. 粉末冶金材料科学与工程, 2013, 18(5): 631
|
16 |
Zhang C H, Xue S B, Xiao G Z, et al. Research status of micron rare metal foil [J]. Mater. Rep., 2020, 34(13): 13139
|
16 |
张聪惠, 薛少博, 肖桂枝 等. 微米级稀有金属箔材研究现状 [J]. 材料导报, 2020, 34(13): 13139
|
17 |
Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena [M]. Holland: Elsevier, 1995: 2
|
18 |
Beck P A, Kremer J C, Demer L. Grain growth in high purity aluminum [J]. Phys. Rev. J. Arch., 1947, 71(8): 555
|
19 |
Hu H, Rath B B. On the time exponent in isothermal grain growth [J]. Metall. Mater. Trans., 1970, 1B: 3181
|
20 |
Palai P, Prabhu N, Hodgson P D, et al. Grain growth and β-Mg17Al12 intermetallic phase dissolution during heat treatment and its impact on deformation behavior of AZ80 Mg-alloy [J]. J. Mater. Eng. Perform., 2014, 23(1): 77
doi: 10.1007/s11665-013-0722-9
|
21 |
Humphreys F J. Particle stimulated nucleation of recrystallization at silica particles in nickel [J]. Scripta Mater., 2000, 43(7): 591
doi: 10.1016/S1359-6462(00)00442-5
|
22 |
Nes E. The effect of a fine particle dispersion on heterogeneous recrystallization [J]. Acta Metall., 1976, 24(5): 391
doi: 10.1016/0001-6160(76)90059-6
|
23 |
McQueen H J, Evangelista E, Bowles J, et al. Hot deformation and dynamic recrystallization of Al-5Mg-0.8Mn alloy [J]. Metal. Sci., 1984, 18(8): 395
doi: 10.1179/030634584790419854
|
24 |
Humphreys F J. The nucleation of recrystallization at second phase particles in deformed aluminium [J]. Acta Metall., 1977, 25(11): 1323
doi: 10.1016/0001-6160(77)90109-2
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|