Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (7): 523-534    DOI: 10.11901/1005.3093.2022.145
  研究论文 本期目录 | 过刊浏览 |
一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响
冯叶1,2, 陈志勇1(), 姜肃猛1, 宫骏1, 单以银1, 刘建荣1, 王清江1()
1.中国科学院金属研究所 师昌绪先进材料创新中心 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate
FENG Ye1,2, CHEN Zhiyong1(), JIANG Sumeng1, GONG Jun1, SHAN Yiyin1, LIU Jianrong1, WANG Qingjiang1()
1.Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
Ye FENG, Zhiyong CHEN, Sumeng JIANG, Jun GONG, Yiyin SHAN, Jianrong LIU, Qingjiang WANG. Effect of a NiCrAlSiY Coating on Cyclic Oxidation and Room Temperature Tensile Properties of Ti65 Alloy Plate[J]. Chinese Journal of Materials Research, 2023, 37(7): 523-534.

全文: PDF(24838 KB)   HTML
摘要: 

采用电弧离子镀在Ti65钛合金板材表面涂覆一种NiCrAlSiY涂层,并对其进行650℃~800℃的循环氧化实验,研究了这种涂层对板材抗氧化性能和室温力学性能的影响。结果表明,经500次循环氧化后涂覆NiCrAlSiY涂层的Ti65板材由涂层、扩散层和基材区三个区域组成,涂层与板材的结合界面比较致密,达到了完全抗氧化级别;涂层表面的氧化物以Al2O3为主,循环氧化温度升高到800℃在涂层表面开始出现TiO2氧化物。在循环氧化过程中涂层与板材间的元素扩散以Ni和Ti元素为主,循环氧化温度升高到800℃发生少量Cr元素扩散;Ni与Ti元素的互扩散导致在涂层与板材的结合界面生成了Ti2Ni和TiNi。循环氧化后的板材其拉伸强度保持率高于90%,涂覆涂层板材的拉伸延伸率可达初始态板材延伸率的30%左右。供货态板材氧化后塑性较低的原因,可能是在高温下氧元素渗入板材表面产生了表面脆性。

关键词 材料表面与界面Ti65钛合金板材NiCrAlSiY涂层循环氧化力学性能    
Abstract

Cyclic oxidation resistance is an essential factor affecting the reliable use of Ti65 Ti-alloy plates in aerospace vehicles. In this paper, the cyclic oxidation resistance of Ti65 plates was investigated by cyclic oxidation testing at 650℃~800℃. The results showed that the NiCrAlSiY coated Ti65 plate was composed of three regions after 500 cycles of oxidation test: coating, diffusion layer, and substrate region. The interface of coating/plate was relatively compact, and the coated plate exhibited a fully antioxidant level. The major oxide on the surface of coated plate was found to be Al2O3, while TiO2 was detected when oxidation temperature increased to 800℃. During cyclic oxidation, the elements diffusion between coating and substrate were mainly Ni and Ti, while the diffusion of a small amount of Cr occurred when temperature increased to 800℃. The inter-diffusion of Ni and Ti were thought to lead to the generation of Ti2Ni and TiNi at coating/plate interface. After cyclic oxidation, the tensile strength retention of both coated and as-received plates were more than 90%, while the elongation of coated plates was only about 30% of the original plates (before cyclic oxidation). The plates without coating were failed by brittle fracture after cyclic oxidation, obviously, the significant reduction of tensile elongation might be due to the brittleness caused by infiltration of oxygen element at high temperature on the plate surface.

Key wordssurface and interface in the materials    Ti65 plate    NiCrAlSiY coating    cyclic oxidation    mechanical properties
收稿日期: 2022-03-15     
ZTFLH:  TB31  
基金资助:国家科技重大专项(J2019-VI-0012-0126);沈阳市科技计划项目(20-203-5-31)
通讯作者: 陈志勇,研究员,zhiyongchen@imr.ac.cn,研究方向为高温钛合金板材成分设计与应用;
王清江,研究员,qjwang@imr.ac.cn,研究方向为高温钛合金材料与应用
Corresponding author: CHEN Zhiyong, Tel: (024)23971586, E-mail: zhiyongchen@imr.ac.cn;
作者简介: 冯叶,女,1997年生,硕士
图 1  拉伸性能测试用板状试样的尺寸
图2  在650℃~800℃循环氧化增重曲线

Oxidation temperature

/℃

Mass gain

/ mg·cm-2

Mean oxidation rate / g·m-2·h-1

Ratio of mean

oxidation rate

(as received / coated)

650Coated0.028570.001718.9
As received0.538490.0322
700Coated0.084520.005111.3
As received0.960320.0575
750Coated0.178970.010711.7
As received2.077780.1244
800Coated0.57140.0342/
As received-1.52976-0.0916
表1  在650℃-800℃循环500次后的抗氧化性能评价
图3  在不同温度循环氧化后涂覆涂层板材表面的X 射线衍射谱
图4  供货态板材在不同温度循环氧化后的显微组织
图5  在不同温度循环氧化后涂覆涂层板材的背散射电子成像组织
图6  在不同温度循环氧化后涂覆涂层板材表面附近的电子探针元素分布
图7  在不同温度循环氧化后板材涂层/基体界面的背散射电子成像组织
Temperature / ℃PositionElementsResult
NiTiAl
650136.6732.8513.78TiNi
230.3859.106.47Ti2Ni
326.2161.665.98Ti2Ni
410.4774.6210.17β phase
700543.6045.846.21TiNi
630.2760.855.75Ti2Ni
727.6463.484.56Ti2Ni
816.1070.987.93β phase
94.0983.119.07α phase
7501043.5950.633.62TiNi
1127.3863.116.11Ti2Ni
1229.7362.855.51Ti2Ni
136.9981.019.31β phase
144.3475.5512.88α phase
151.0681.3813.84α phase
8001628.5259.887.55Ti2Ni
175.2879.6110.03β phase
185.6480.989.11β phase
190.5676.4817.45α phase
200.8179.7315.49α phase
表2  在不同温度氧化后板材的涂层和基材区界面附近的能谱分析结果
图8  涂层/基体界面的组织和元素扩散示意图
图9  不同温度循环氧化后板材的显微硬度分布
Yield strength / MPaUltimate tensile strength / MPaElongation / %
Coated plates after oxidation101210714.2
As-received plate after oxidation105210610.3
As-received plate1076113714.0
表3  循环氧化后板材的室温拉伸性能
图10  在650℃循环氧化后供货态板材和涂覆涂层板材断口处的形貌
图11  在650℃循环氧化后板材断口的形貌和断口附近的组织
图12  供货态板材和涂覆涂层板材的室温拉伸断裂过程示意图
1 Wang Q J, Liu J R, Yang R. Current status and prospects of high-temperature titanium alloys [J]. J. Aeronaut. Mater., 2014, 34(4): 1
1 王清江, 刘建荣, 杨 锐. 高温钛合金的现状与前景 [J]. 航空材料学报, 2014, 34(4): 1
2 Wu X Y, Chen Z Y, Chen C, et al. Effects of heat treatment on microstructure, texture and tensile properties of Ti65 alloy [J]. Chin. J. Mater. Res., 2019, 33(10): 785
doi: 10.11901/1005.3093.2019.110
2 吴汐玥, 陈志勇, 程 超 等. 热处理对Ti65钛合金板材的显微组织、织构及拉伸性能的影响 [J]. 材料研究学报, 2019, 33(10): 785
doi: 10.11901/1005.3093.2019.110
3 Gou M M, Bai R M, Meng L J, et al. Effect of strain rate on room temperature tensile properties of titanium alloys [J]. Hunan Nonferrous Met., 2020, 36(01): 52
3 苟曼曼, 白瑞敏, 孟利军 等. 应变速率对钛合金室温拉伸性能的影响 [J]. 湖南有色金属, 2020, 36(01): 52
4 Han R, Naeem ul H, Li J Y, et al. A novel phosphate-ceramic coating for high temperature oxidation resistance of Ti65 alloys [J]. Ceram. Int, 2019, 45(18): 23895
doi: 10.1016/j.ceramint.2019.06.218
5 Tang Z, Niewolak L, Shemet V, et al. Development of oxidation resistant coatings for gamma-TiAl based alloys [J]. Mater. Sci. Eng. A, 2002, 328: 297
doi: 10.1016/S0921-5093(01)01734-8
6 Gauthier V, Dettenwanger F, Schutze M. Oxidation behavior of gamma-TiAl coated with zirconia thermal barriers [J]. Intermetallics, 2002, 10(7): 667
doi: 10.1016/S0966-9795(02)00036-5
7 Wang H Y, An Y Q, Li C Y, et al. Research progress of Ni-based superalloys [J]. Materials Reports, 2011, 25(S2): 482
7 王会阳, 安云岐, 李承宇 等. 镍基高温合金材料的研究进展 [J]. 材料导报, 2011, 25(S2): 482
8 Yao J J, Gao L K, Deng B, et al. Technological progress of Ni-based superalloys [J]. Adv. Mater. Ind., 2015, 12: 43
8 姚进军, 高联科, 邓 斌. 镍基高温合金的技术进展 [J]. 新材料产业, 2015, 12: 43
9 Zhang J, Wang L N, Peng Y T, et al. Characterization of Hf-doped CoCrAlYSi coatings synthesized by laser cladding on Ni-based GH586 alloy [J]. J. Vac. Sci. Technol., 2020, 40(03): 203
9 张 静, 王丽娜, 彭玉涛 等. 镍基高温合金表面激光熔覆CoCrAlYSiHfx涂层组织性能分析 [J]. 真空科学与技术学报, 2020, 40(03): 203
10 Zhang X G, Deng C G, Deng C M, et al. Oxidation resistance and microstructural evolution of NiCrAlY coatings during oxidation [J]. J. Aeronaut. Mater., 2015, 35(05): 21
10 张新格, 邓畅光, 邓春明 等. NiCrAlY涂层抗氧化性及氧化过程中的微观结构演变 [J]. 航空材料学报, 2015, 35(05): 21
11 Khakzadian J, Hosseini S H, Madar K Z. Cathodic arc deposition of NiCrAlY coating: oxidation behaviour and thermodynamic [J]. Surf. Eng., 2019, 35(08): 677
doi: 10.1080/02670844.2018.1564474
12 Pereira J C, Zambrano J, Rayón E, et al. Mechanical and microstructural characterization of MCrAlY coatings produced by laser cladding: The influence of the Ni, Co and Al content [J]. Surf. Coat. Technol., 2018, 338: 22
doi: 10.1016/j.surfcoat.2018.01.073
13 Tang Z L, Wang F H, Wu W. Effect of Cr on the high-temperature oxidation properties of TiAl intermetallic compounds [J]. Acta Metall. Sin., 1997, 33(10): 1028
13 唐兆麟, 王福会, 吴 维. Cr对TiAl金属间化合物高温氧化性能的影响 [J]. 金属学报, 1997, 33(10): 1028
14 Guo X Z. Microstructure and high temperature oxidation resistance of Ti-Al-Cr coatings by laser melting on titanium alloy surfaces [D]. Kunming: Kunming University Of Science And Technology, 2018
14 郭新政. 钛合金表面激光熔覆Ti-Al-Cr涂层的组织及其高温抗氧化性能 [D]. 昆明: 昆明理工大学, 2018
15 Wang H, Wu M P, Lu P P, et al. Effect of laser power on the mechanical properties of the cobalt-based/go composite coating [J]. Laser & Optoelectronics Process, 2020, 57(9): 134
15 王 航, 武美萍, 陆佩佩 等. 激光功率对钴基/GO复合熔覆层力学性能的影响 [J]. 激光与光电子学进展, 2020, 57(9): 134
16 Peng B, Li H Q, Zhang Q, et al. High-temperature thermal stability and oxidation resistance of Cr and Ta co-alloyed Ti-Al-N coatings deposited by cathodic arc evaporation [J]. Corros. Sci., 2020, 167
17 Gong X, Chen R R, Wang Q, et al. Cyclic oxidation behavior and oxide scale adhesion of Al/NiCrAlY coating on pure titaniμm alloy [J]. J. Alloys Compd., 2017, 729: 679
doi: 10.1016/j.jallcom.2017.09.199
18 Lin J, Stinnett T C. Development of thermal barrier coatings using reactive pulsed dc magnetron sputtering for thermal protection of titaniμm alloys [J]. Surf. Coat. Technol., 2020, 403
19 Lee J K, Oh M H, Wee D M, et al. Long-term oxidation properties of Al-Ti-Cr two-phase alloys as coating materials for TiAl alloy [J]. Intermetallics, 2002, 10: 347
doi: 10.1016/S0966-9795(02)00006-7
20 Wang B, Lu C Y, Sun C, et al. Effect of NiCrAlY coatings on oxidation resistance of Ni-base superalloy K17 [J]. Corros. Sci. Prot. Technol., 2002, 14(01): 7
20 王 冰, 卢春燕, 孙 超 等. NiCrAlY涂层对Ni基高温合金K17抗氧化性能的影响 [J]. 腐蚀科学与防护技术, 2002, 14(01): 7
21 Li M S. High Temperature Corrosion of Metals [M]. Beijing: Metallurgical Industry Press, 2001: 148
21 李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001: 148
22 Lambrigger M, Strain and substitution X-ray scattering of Ni 0. 882Ti0.118 with concentration waves in the <100> direction [J]. J. Phys. Chem. Solids, 1991, 52(7): 913
doi: 10.1016/0022-3697(91)90014-Q
23 Peng X M, Xia C Q, Dai X Y, et al. Study on the interface reaction behavior of NiCrAlY coating on titanium alloy [J]. Surf. Coat. Technol., 2013, 232: 254
doi: 10.1016/j.surfcoat.2013.05.024
24 Peng X M, Xia C Q, Wang J H, et al. Oxidation behavior of TC4 titanium alloy with NiCrAlY coating [J]. The Chinese Journal of Nonferrous Metals, 2008, 18(4): 601
24 彭小敏, 夏长清, 王金惠 等. TC4钛合金沉积NiCrAlY涂层的氧化行为 [J]. 中国有色金属学报, 2008, 18(4): 601
25 Liu H P, Hao S S, Wang X H, et al. Interaction of a near-alpha type titanium alloy with NiCrAlY protective coating at high temperatures [J]. Scr. Mater., 1998, 39(10): 1443
doi: 10.1016/S1359-6462(98)00333-9
26 Rominiyi A L, Shongwe M B, Ogunmuyiwa E N, et al. Effect of nickel addition on densification, microstructure and wear behaviour of spark plasma sintered CP-titanium [J]. Mater. Chem. Phys., 2020, 240: 122130
doi: 10.1016/j.matchemphys.2019.122130
27 Liu H W, Bishop D P, Plucknett K P. A comparison of Ti-Ni and Ti-Sn binary alloys processed using powder metallurgy [J]. Mater. Sci. Eng. A, 2015, 644: 392
doi: 10.1016/j.msea.2015.07.085
[1] 陆益敏, 马丽芳, 王海, 奚琳, 徐曼曼, 杨春来. 脉冲激光沉积技术生长铜材碳基保护膜[J]. 材料研究学报, 2023, 37(9): 706-712.
[2] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[3] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[4] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[7] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[9] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[10] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[11] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[12] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.
[13] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[14] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[15] 赵云梅, 赵洪泽, 吴杰, 田晓生, 徐磊. 热处理对粉末冶金Inconel 718合金TIG焊接的组织和性能的影响[J]. 材料研究学报, 2023, 37(3): 184-192.