Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (7): 502-510    DOI: 10.11901/1005.3093.2022.182
  研究论文 本期目录 | 过刊浏览 |
固溶温度对GH4742合金力学性能及γ' 相的影响
秦鹤勇1,2, 李振团1,2(), 赵光普1,2, 张文云1,2, 张晓敏1,2
1.钢铁研究总院高温材料研究所 北京 100081
2.北京钢研高纳科技股份有限公司 北京 100081
Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy
QIN Heyong1,2, LI Zhentuan1,2(), ZHAO Guangpu1,2, ZHANG Wenyun1,2, ZHANG Xiaomin1,2
1.High-Temperature Materials Institute, Central Iron and Steel Research Institute, Beijing 100081, China
2.CISRI-GAONA Co., Ltd., Beijing 100081, China
引用本文:

秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
Heyong QIN, Zhentuan LI, Guangpu ZHAO, Wenyun ZHANG, Xiaomin ZHANG. Effect of Solution Temperature on Mechanical Properties and γ' Phase of GH4742 Superalloy[J]. Chinese Journal of Materials Research, 2023, 37(7): 502-510.

全文: PDF(12683 KB)   HTML
摘要: 

采用EBSD、SEM等手段研究了固溶温度对GH4742合金的微观亚结构、力学性能和γ'相的影响。结果表明,固溶温度为1080℃~1120℃时,随着固溶温度的提高基体发生静态再结晶的比例提高,小角度晶界的比例由13.2%降低为3.2%;同时,晶粒显著粗化,平均晶粒尺寸由11.0 μm增大到111.6 μm,Σ3孪晶界的比例由13.2%提高到58.6%。随着固溶温度的提高,基体内一次γ'相的体积分数显著降低、尺寸增大,二次γ'相的体积分数和尺寸增加,三次γ'相的体积分数和尺寸变化较小。在不同固溶温度下γ'相强化增量的变化较小,晶粒粗化是导致其强度降低的主要因素。随着固溶温度的提高GH4742合金的室温强度显著降低,而高温强度提高和持久断裂时间显著增加。固溶温度为1100℃时,GH4742合金的室温和高温力学性能良好。

关键词 金属材料GH4742合金固溶温度微观亚结构γ'力学性能    
Abstract

The effect of different solution temperatures on the micro-substructure and γ' phase of GH4742 superalloy were studied by EBSD and TEM, and the mechanical properties of GH4742 superalloy were measured. The results show that the proportion of static recrystallization of matrix increased with increasing solution temperature in the range of 1080℃ to 1120℃, which resulted in the decrease of the proportion of low-angle grain boundaries from 13.2% to 3.2%; Meanwhile, the grains were significantly coarsened with a size increase from 11.0 μm to 111.6 μm, the proportion of Σ3 twin boundary increased from 13.2% to 58.6%. The volume fraction of the primary γ' phase in the matrix decreased evidently with the increase of the solution temperature, while the size of the primary γ' phase increased, and the volume fraction and size of the secondary γ' phase increased continuously, and that of the tertiary γ' phase changed little. The variety of strengthening contribution of γ' phase was small by different solution temperatures, and the strengthening increment caused by grain boundary strengthening plays determine role in the strength of the matrix. The room temperature strength of GH4742 alloy decreased dramatically with the increase of solution temperature, while the high temperature strength and rupture fracture time increased markedly. The GH4742 alloy solution treated at 1100℃ exhibits good mechanical properties at either room temperature or high temperature.

Key wordsmetallic materials    GH4742 superalloy    solution temperature    micro-substructure    mechanical properties
收稿日期: 2022-04-06     
ZTFLH:  TG146.1  
基金资助:国家科技重大专项(2017-VI-0018-0090)
通讯作者: 李振团,高级工程师,lizhentuan@163.com,研究方向为难变形高温合金的微观变形机理及γ'相析出行为的调控
Corresponding author: LI Zhentuan, Tel: 18813051277, E-mail: lizhentuan@163.com
作者简介: 秦鹤勇,男,1980年生,高级工程师
ComponentCSiMnPSCrMoCoAlTiNb
GH47420.050.039<0.005<0.005<0.00413.974.88102.712.802.60
表1  实验用GH4742合金的化学成分
图1  不同固溶温度下GH4742合金的应力-应变曲线
图2  固溶温度对GH4742合金持久性能的影响
图3  不同工艺条件的试样的EBSD 晶界分布
GB/%CSL /%Grain size /μm
HAGBLAGBCSL Σ3CSL Σ9CSL Σ27
Forged79.920.110.20.520.1910.7
108081.318.713.20.760.1911.0
110086.613.431.51.560.3520.6
112096.83.258.61.510.22111.2
表2  不同工艺条件下EBSD晶界比例以及晶粒尺寸
图4  不同工艺的GH4742合金中γ'相的形貌
图5  固溶温度对GH4742合金γ'相体积分数和尺寸的影响
图6  不同固溶温度下基体内位错的组态
图7  不同强化机制下位错与γ'粒子相互作用的示意图
图8  反相畴界能和体积分数对γ'相不同强化机制中临界半径的影响

Strengthening

mechanism

1080 ℃1100 ℃1120 ℃
r / nmf / %Δσ / MPar / nmf / %Δσ / MPar / nmf / %Δσ/ MPa
γ'Orowan bypasing415.46.954.0864.52.715.0---
γ'Strong-coupling93.010.6218.0106.215.9251.1152.918.0224.0
γ'Strong-coupling15.819.5347.815.918.4345.915.919.0348.3
ΔσT572598572
表3  不同工艺条件下γ'相的粒子尺寸、体积分数以及强化增量
1 Kong W, Wang Y, Chen Y, et al. Investigation of uniaxial ratcheting fatigue behaviours and fracture mechanism of GH742 superalloy at 923 K [J]. Mater. Sci. Eng. A, 2022, 831: 142173.
doi: 10.1016/j.msea.2021.142173
2 Zhang X S, Wang L, Liu Y, et al. Effect of aging treatment at 750℃ on fatigue crack propagation behavior of GH4742 superalloy [J]. Chin. J. Mater. Res., 2019, 33(10): 721
doi: 10.11901/1005.3093.2019.138
2 张星硕, 王 磊, 刘 杨 等. 750℃时效对GH4742合金疲劳裂纹扩展行为的影响 [J]. 材料研究学报, 2019, 33(10): 721
doi: 10.11901/1005.3093.2019.138
3 Zhou G, Li J L, Men Y, et al. Dynamic recrystallization behavior of GH4742 superalloy used in turbine disk [J]. Rare Met. Mater. Eng., 2021, 50(4): 1318.
3 周 舸, 李鉴霖, 门 月 等. 涡轮盘用GH4742合金动态再结晶行为 [J]. 稀有金属材料与工程, 2021, 50(4): 1318
4 Lu X, Deng Q, Du J, et al. Effect of slow cooling treatment on microstructure of difficult deformation GH4742 superalloy [J]. J. Alloys Compd., 2009, 477(1-2): 100
doi: 10.1016/j.jallcom.2008.10.088
5 Long Z D, Deng Q, LIN P, et al. Effects of heat treatment on micros tructure and mech anical pro per ties of GH742 superalloy [J]. J. Mater. Eng., 1999, (03), 41
5 龙正东, 邓 群, 林 平 等. 热处理对 GH742 合金组织和力学性能的影响 [J]. 材料工程, 1999, (03), 41
6 Shu D L. Mechanical Properties of Engineering Materials [M]. Beijing: Mechanical Industry Press, 2007: 163.
6 束德林. 工程材料力学性能 [M]. 北京: 机械工业出版社, 2007: 163
7 Huang Q X, Li H K. Superalloy [M]. Beijing: Metallurgy Industry Press, 2000, 294
7 黄乾晓, 李汉康. 高温合金 [M]. 北京: 冶金工业出版社, 2000: 294
8 Kim Y K, Kim D, Kim H K, et al. A numerical model to predict mechanical properties of Ni-base disk superalloys [J]. Int. J. Plast., 2018, 110: 123
doi: 10.1016/j.ijplas.2018.06.011
9 Pradhan S K, Mandal S, Athreya C N, et al. Influence of processing parameters on dynamic recrystallization and the associated annealing twin boundary evolution in a nickel base superalloy [J]. Mater. Sci. Eng. A, 2017, 700: 49
doi: 10.1016/j.msea.2017.05.109
10 Raj B. Materials and manufacturing technologies for sodium cooled fast reactors and associated fuel cycle: innovations and maturity [J]. Energy Procedia, 2011, 7: 186
doi: 10.1016/j.egypro.2011.06.025
11 Azarbarmas M, Aghaie-Khafri M, Cabrera J M, et al. Dynamic recrystallization mechanisms and twining evolution during hot deformation of Inconel 718 [J]. Mater. Sci. Eng. A, 2016, 678: 137
doi: 10.1016/j.msea.2016.09.100
12 Kozar R, Suzuki A, Milligan W, et al. Strengthening mechanisms in polycrystalline multimodal nickel-base superalloys [J]. Mater. Trans. A., 2009, 40(7): 1588
13 Galindo-Nava E I, Connor L D, Rae C M F. On the prediction of the yield stress of unimodal and multimodal γ' Nickel-base superalloys [J]. Acta Mater., 2015, 98: 377
doi: 10.1016/j.actamat.2015.07.048
14 Hüther W, Reppich B. Interaction of dislocations with coherent, stress-free, ordered particles [J]. International Journal of Materials Research, 1978, 69(10): 628
doi: 10.1515/ijmr-1978-691003
15 Reed R C, The superalloys : fundamentals and applications [M]. Cambridge university press 2008
16 Yong Q L. Secondary Phases in Steels [M]. Beijing: Metallurgy Industry Press, 2006: 46
16 雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 46
17 Wang J S, Mulholland M, Olson G, et al. Prediction of the yield strength of a secondary-hardening steel [J]. Acta Mater., 2013, 61(13): 4939
doi: 10.1016/j.actamat.2013.04.052
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.