Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (7): 511-522    DOI: 10.11901/1005.3093.2022.315
  研究论文 本期目录 | 过刊浏览 |
缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响
刘天福1, 张滨1(), 张均锋2, 徐强3, 宋竹满4, 张广平4
1.东北大学 材料各向异性与织构教育部重点实验室 材料科学与工程学院 沈阳 110819
2.中国科学院力学研究所 北京 100190
3.中国船舶科学研究中心 无锡 214082
4.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
Effect of Notch Stress Concentration Factors on Low-cycle Fatigue Performance of TC4 ELI Alloy
LIU Tianfu1, ZHANG Bin1(), ZHANG Junfeng2, XU Qiang3, SONG Zhuman4, ZHANG Guangping4
1.Key Laboratory for Anisotropy and Texture of Materials, Ministry of Education, School of Materials Science and Engineering, Northeastern University, Shengyang 110819, China
2.Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
3.China Ship Scientific Research Center, Wuxi 214082, China
4.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.
Tianfu LIU, Bin ZHANG, Junfeng ZHANG, Qiang XU, Zhuman SONG, Guangping ZHANG. Effect of Notch Stress Concentration Factors on Low-cycle Fatigue Performance of TC4 ELI Alloy[J]. Chinese Journal of Materials Research, 2023, 37(7): 511-522.

全文: PDF(15767 KB)   HTML
摘要: 

研究了缺口应力集中系数不同的深海潜水器耐压壳用TC4 ELI(Extra-low-interstitial) 合金板材在恒总应变幅控制下的低周疲劳行为。结果表明,在应变幅较低(0.7%以下)和应变幅较高(0.8%和0.9%)条件下的光滑试样在循环初期分别发生了循环硬化和循环软化,而缺口试样在0.2%~0.7%应变幅条件下的循环初期均发生了循环硬化。通过循环载荷作用下材料滞回能的变化描述了TC4 ELI合金试样低周疲劳的损伤程度,得到了缺口应力集中系数与低周疲劳性能参数之间的关系,建立了相对裂纹萌生寿命预测模型。利用该模型能较好地预测缺口应力集中系数较低的TC4 ELI合金在高应变幅条件下的相对疲劳裂纹萌生寿命。

关键词 金属材料TC4 ELI合金低周疲劳缺口应力集中系数疲劳寿命    
Abstract

The low-cycle fatigue behavior of TC4 ELI (Extra-low-interstitial) alloy plates for pressure shells in deep-sea submersible with different notch stress concentration factors under constant total strain amplitude was investigated. The results indicate that cyclic harding and cyclic softening occur in the smooth specimens under the lower strain amplitude (≤0.7%) and higher strain amplitudes (0.8% and 0.9%), respectively, at the initial stage of the cyclic loading. While the cyclic hardening occurs in all the notched specimens under the strain amplitudes of 0.2% to 0.7% at the initial stage of the cyclic loading. Based on the variation of material hysteretic energy under the cyclic loading, a relative crack initiation life prediction model was established to describe the damage degree of TC4ELI alloy specimens under the low cycle fatigue loading. The relationship between notch stress concentration factors and low cycle fatigue performance parameters was also described. This model can effectively predict the relative fatigue crack initiation life of TC4ELI alloy with low notch stress concentration factor under high strain amplitude conditions.

Key wordsmetallic material    TC4 ELI alloy    low cycle fatigue    notch    Stress concentration factor    fatigue life
收稿日期: 2022-06-07     
ZTFLH:  TB31  
基金资助:国家自然科学基金(51971060);国家自然科学基金(52171128)
通讯作者: 张 滨,教授,zhangb@atm.neu.edu.cn,研究方向为先进工程材料制备与性能
Corresponding author: ZHANG Bin, Tel: (024) 83691585, E-mail: zhangb@atm.neu.edu.cn
作者简介: 刘天福,男,1997年生,硕士生
AlVFeCONHTi
5.50~6.503.60~4.40≤0.25≤0.08≤0.13≤0.03≤0.0125Bal.
表1  TC4 ELI合金的名义成分
图1  不同缺口应力集中系数的TC4 ELI低周疲劳试样的尺寸和加工精度
图2  轧制态TC4 ELI合金的光学显微组织
图3  缺口应力集中系数不同的TC4 ELI合金的应力幅随循环周次的变化曲线
图4  缺口应力集中系数不同的TC4 ELI试样的循环应力-应变滞回线
图5  不同应变幅控制下TC4 ELI合金光滑试样疲劳断口的SEM照片
图6  三种缺口应力集中系数的TC4 ELI合金缺口试样在应变幅为0.3%控制下疲劳断口的SEM照片
图7  TC4 ELI合金光滑试样在不同应变幅控制下疲劳断口处的TEM照片
图8  缺口应力集中系数不同的TC4 ELI合金的应力幅与塑性应变幅拟合曲线图及循环强度系数和循环应变硬化指数随缺口应力集中系数的变化
Ktn'K'
10.0591116.4
1.970.1272217.4
2.640.1482388.9
3.620.2165755.6
表2  缺口应力集中系数不同的TC4 ELI合金的疲劳性能参数
图9  光滑试样在总应变幅为0.9%控制下TC4 ELI合金的滞回能与相对循环周次(N/Nf )的关系以及滞回能曲线中五个参考点对应的滞回线
图10  缺口应力集中系数不同的合金的滞回能与相对循环周次关系以及相对疲劳裂纹萌生寿命与Δεt /2和Kt 的关系
图11  TC4 ELI合金的相对疲劳裂纹萌生寿命与总应变幅的关系
1 Zhan Z X. Experiments and numerical simulations for the fatigue behavior of a novel TA2-TA15 titanium alloy fabricated by laser melting deposition [J]. International Journal of Fatigue, 2019, 121: 20
doi: 10.1016/j.ijfatigue.2018.12.001
2 He B B, Wu W H, Zhang L, et al. Microstructural characteristic and mechanical property of Ti6Al4V alloy fabricated by selective laser melting [J]. Vacuum, 2018, 150: 79
doi: 10.1016/j.vacuum.2018.01.026
3 Jiang X J, Chen G Y, Men X L, et al. Ultrafine duplex microstructure and excellent mechanical properties of TC4 alloy via a novel thermo- mechanical treatment [J]. Journal of Alloys and Compounds, 2018, 767: 617
doi: 10.1016/j.jallcom.2018.07.141
4 Bai C Y, Lan L, Xin R Y, et al. Microstructure evolution and cyclic deformation behavior of Ti-6Al-4 V alloy via electron beam melting during low cycle fatigue [J]. International Journal of Fatigue, 2022, 159: 106784
doi: 10.1016/j.ijfatigue.2022.106784
5 Zhang M D, Cao J X, Li T, et al. The effect of transformed β-phase on local area plastic deformation and dislocation characteristics of Ti6242s alloy under low-cycle fatigue and dwell fatigue [J]. Materials Science and Engineering: A, 2021, 802: 140643
doi: 10.1016/j.msea.2020.140643
6 Carrion P E, Shamsaei N, Daniewicz S R, et al. Fatigue behavior of Ti-6Al-4V ELI including mean stress effects [J]. International Journal of Fatigue, 2017, 99: 87
doi: 10.1016/j.ijfatigue.2017.02.013
7 Galarraga H, Warren R J, Lados D A, et al. Fatigue crack growth mechanisms at the microstructure scale in as-fabricated and heat treated Ti-6A1-4V ELI manufactured by electron beam melting (EBM) [J]. Engineering Fracture Mechanics, 2017, 176: 263
doi: 10.1016/j.engfracmech.2017.03.024
8 Galarraga H, Warren R J, Lados D A, et al. Effects of heat treatments on microstructure and properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM) [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2017, 685: 417
doi: 10.1016/j.msea.2017.01.019
9 Benedetti M, Torresani E, Leoni M, et al. The effect of post-sintering treatments on the fatigue and biological behavior of Ti-6Al-4V ELI parts made by selective laser melting [J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71: 295
doi: S1751-6161(17)30139-X pmid: 28376363
10 Zhang J, Zuo X, Wang W, et al. Overviews of investigation on submersible pressure hulls [J]. Advances in Natural Science, 2014, 7(4): 54
11 Yuan Y, Zhang M, Li X, et al. Research on underwater pre-installed unmanned combat equipment [J]. Tactical Missile Technology, 2018, (1): 51
11 袁亚, 张 木, 李 翔 等. 国外水下预置无人作战装备研究 [J]. 战术导弹技术, 2018, (1): 51
12 Li W Y, Wang S, Liu T, et al. Current status and progress on pressure hull structure of manned deep submersible [J]. Shipbuilding of China, 2016, 57(1): 210
12 李文跃, 王 帅, 刘 涛 等. 大深度载人潜水器耐压壳结构研究现状及最新进展[J]. 中国造船, 2016, 57(1): 210
13 Zhang Y, Liu X M, Lei X Q, et al. New structural desigin of spherical pressure hull for deep-sea submersibles: a multilayer and pressure redistribution approach [J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(6): 1231
doi: 10.6052/0459-1879-17-156
13 张 吟, 刘小明, 雷现奇 等. 基于分层分压结构的新型潜水器耐压壳结构设计 [J]. 力学学报, 2017, 49(6): 1231
14 Shen Y S, Li W Y, Jiang X Y. Parameter research of test pressure and stress criterion for the titanium-alloy manned pressure hulls[J]. The ocean engineering, 2019, 37(5): 10
14 沈允生, 李文跃, 姜旭胤. 钛合金载人舱球壳试验压力和应力衡准取值研究 [J]. 海洋工程, 2019, 37(5): 10
15 Yu C L, Chen Z T, Chen C, et al. Influence of initial imperfections on ultimate strength of spherical shells [J]. International Journal of Naval Architecture and Ocean Engineering, 2017, 9(5): 473
doi: 10.1016/j.ijnaoe.2017.02.003
16 Gao P F, Lei Z N, Li Y K, et al. Low-cycle fatigue behavior and property of TA15 titanium alloy with tri-modal microstructure [J]. Materials Science & Engineering A, 2018, 736: 1
17 Pan X N, Xu S W, Qian G A, et al. The mechanism of internal fatigue-crack initiation and early growth in a titanium alloy with lamellar and equiaxed microstructure[J]. Materials Science and Engineering: A, 2020, 798: 140110
doi: 10.1016/j.msea.2020.140110
18 Wang Y F, Chen R, Cheng X, et al. Effects of microstructure on fatigue crack propagation behavior in a bi-modal TC11 titanium alloy fabricated via laser additive manufacturing[J]. Journal of Materials Science & Technology, 2019, 35(2): 403
19 Guo P, Zhao Y Q, Zeng W D. Fatigue crack growth behavior in TC4-DT titanium alloy with different lamellar microstructures [J]. Rare Metal Materials and Engineering, 2015, 44(2): 277
doi: 10.1016/S1875-5372(15)30019-9
20 Wan M P, Wu Y J, Xu P W. Effects of microstructure on fatigue crack propagation rate of TC4ELI alloy [J]. Hot Working Technology, 2012, 41(16): 20
20 万明攀, 伍玉娇, 徐平伟. TC4ELI合金显微组织对疲劳裂纹扩展速率的影响 [J]. 热加工工艺, 2012, 41(16): 20
21 Ma Y J, Li J W, Lei J f, et al. Influences of microstructure on fatigue crack propagating path and crack growth rates in TC4 ELI alloy [J]. Acta Metallurgica Sinica, 2010, 46(9): 1086
doi: 10.3724/SP.J.1037.2010.00155
21 马英杰, 李晋炜, 雷家峰 等. 显微组织对TC4ELI合金疲劳裂纹扩展路径及扩展速率的影响 [J]. 金属学报, 2010, 46(9): 1086
doi: 10.3724/SP.J.1037.2010.00155
22 Xu Z L, Huang C W, Wan M P, et al. Influence of microstructure on strain controlled low cycle fatigue crack initiation and propagation of Ti-55531 alloy [J]. International Journal of Fatigue, 2022, 156: 106678
doi: 10.1016/j.ijfatigue.2021.106678
23 Wang L, Wang K, Li Y Q, et al. Low-cycle fatigue properties of TC4ELI titanium alloy [J]. Titanium Industry Progress, 2018, 35(2): 17
23 王 雷, 王 琨, 李艳青 等. TC4ELI钛合金低周疲劳性能研究[J]. 钛工业进展, 2018, 35(2): 17
24 Wang K, Li Y Q, Wang L, et al. Effect of strain amplitude on fatigue fracture mechanism of TC4 titanium alloy with duplex structure [J]. Hot Working Technology, 2018, 47(10): 86
24 王 琨, 李艳青, 王 雷 等. 应变幅值对双态组织TC4钛合金疲劳断裂机制的影响 [J]. 热加工工艺, 2018, 47(10): 86
25 Owolabi G, Okeyoyin O, Bamiduro O, et al. Extension of a probabilistic mesomechanics based model for fatigue notch factor to titanium alloy components [J]. Procedia Materials Science, 2014, 3: 1860
doi: 10.1016/j.mspro.2014.06.300
26 Tian W, Fu Y, Zhong Y, et al. Effects of notches on tensile properties and low cycle fatigue properties of TC17 titanium alloy [J]. Transactions of Materials and Heat Treatment, 2016, 37(11): 68
27 Li W, Zhao H Q, Nehila A, et al. Very high cycle fatigue of TC4 titanium alloy under variable stress ratio: Failure mechanism and life prediction [J]. International Journal of Fatigue, 2017, 104: 342
doi: 10.1016/j.ijfatigue.2017.08.004
28 Li X K, Zhu S P, Liao D, et al. Probabilistic fatigue modelling of metallic materials under notch and size effect using the weakest link theory [J]. International Journal of Fatigue, 2022, 159: 106788
doi: 10.1016/j.ijfatigue.2022.106788
29 Evans W J, Bache M R, Nicholas P J. The prediction of fatigue life at notches in the near alpha titanium alloy Timetal 834 [J]. International Journal of Fatigue, 2001, 23: 103
30 Wu Z R, Hu X T, Song Y D. Multiaxial fatigue life prediction for titanium alloy TC4 under proportional and nonproportional loading [J]. International Journal of Fatigue, 2014, 59: 170
doi: 10.1016/j.ijfatigue.2013.08.028
31 Ding M C, Zhang Y L, Li B, et al. Total fatigue life prediction of TC4 titanium alloy based on surface notch [J]. Engineering Failure Analysis, 2022, 131: 105868
doi: 10.1016/j.engfailanal.2021.105868
32 Li F, Yu X, Jiao L, et al. Research on low cycle fatigue properties of TA15 titanium alloy based on reliability theory [J]. Materials Science and Engineering: A, 2006, 30(1-2): 216
33 Shi S, Deng Q H, Zhang H, et al. Microstructure stability and damage mechanisms in an α/β Ti-6Al-4V-0.55Fe alloy during low cycle dwell-fatigue at room temperature [J]. International Journal of Fatigue, 2022, 155: 106585
doi: 10.1016/j.ijfatigue.2021.106585
34 Nag A K, Praveen K V U, Singh V. Low cycle fatigue behaviour of Ti-6Al-5Zr-0.5Mo-0.25Si alloy at room temperature [J]. Bulletin of Materials Science, 2006, 29(3): 271
doi: 10.1007/BF02706496
35 Zhang M D, Cao J X, Huang X. Local softening behavior accompanied by dislocation multiplication accelerates the failure of Ti-6Al-2Sn-4Zr-2Mo-0.1Si alloy under dwell fatigue load [J]. Scripta Materialia, 2020, 186: 33
doi: 10.1016/j.scriptamat.2020.03.054
36 Osgood W R, Ramberg W. Description of stress-strain curves by three parameters [R]. Washington, USA: N. TN-902, 1943
37 Tong X Y, Wang D J, Xu H. Experimental investigation on cyclic hysteretic energy of carbon and alloy steels [J]. Acta Metallurgica Sinica, 1989, 25(5): 359
37 童小燕, 王德俊, 徐 灏. 碳钢和合金钢的循环滞回能实验研究 [J]. 金属学报, 1989, 25(5): 359
38 Yadav S S, Roy S C, Veerababu J, et al. Quantitative assessment and analysis of non-masing behavior of materials under fatigue [J]. Journal of Materials Engineering and Performance, 2021, 30(3): 2102l
doi: 10.1007/s11665-021-05494-w
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 郭飞, 郑成武, 王培, 李殿中. 稀土元素对低碳钢中奥氏体-铁素体相变动力学的影响[J]. 材料研究学报, 2023, 37(7): 495-501.