|
|
回归时间对2024铝合金的组织和耐蚀性能的影响 |
廖鸿宇, 贾咏馨, 苏睿明( ), 李广龙, 曲迎东, 李荣德 |
沈阳工业大学材料科学与工程学院 沈阳 110870 |
|
Effect of Retrogression Times on Microstructure and Corrosion Resistance of 2024 Aluminum Alloy |
LIAO Hongyu, JIA Yongxin, SU Ruiming( ), LI Guanglong, QU Yingdong, LI Rongde |
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China |
引用本文:
廖鸿宇, 贾咏馨, 苏睿明, 李广龙, 曲迎东, 李荣德. 回归时间对2024铝合金的组织和耐蚀性能的影响[J]. 材料研究学报, 2023, 37(4): 264-270.
Hongyu LIAO,
Yongxin JIA,
Ruiming SU,
Guanglong LI,
Yingdong QU,
Rongde LI.
Effect of Retrogression Times on Microstructure and Corrosion Resistance of 2024 Aluminum Alloy[J]. Chinese Journal of Materials Research, 2023, 37(4): 264-270.
1 |
Fan C H, Ou L, Hu Z Y, et al. Re-dissolution and re-precipitation behavior of nano-precipitated phase in Al-Cu-Mg alloy subjected to rapid cold stamping[J]. T. Nonferr. Metal. Soc., 2019, 29(12):2455
doi: 10.1016/S1003-6326(19)65153-8
|
2 |
Wang H C, Yang H B, Liu G L, et al. Influence of Al-5Ti-0.25C refiner on microstructure and mechanical properties of 2024 alloy[J]. Mater. Rev., 2016, 30(20): 81
|
2 |
王海超, 杨化冰, 刘桂亮 等. Al-5Ti-0.25C细化剂对2024铝合金组织及力学性能的影响[J]. 材料导报, 2016, 30(20): 81
|
3 |
Zhang X M, Liu S D. Aerocraft aluminum alloys and their materials processing[J]. Materials China, 2013, 32(01): 39
|
3 |
张新明, 刘胜胆. 航空铝合金及其材料加工[J]. 中国材料进展, 2013, 32(01): 39
|
4 |
Li T, Tao J L, Wang Q Y. The mechanism of fatigue crack initiation of 2024-T3 and 2524-T34 aluminum alloys[J]. Chin. J. Mater. Res., 2011, 25(01): 67
|
4 |
李 棠, 陶俊林, 王清远. 2024-T3和2524-T34铝合金疲劳裂纹的萌生机制[J]. 材料研究学报, 2011, 25(01): 67
|
5 |
Shi W N, Zhou H F, Zhang X F. High-strength and anti-corrosion of Al-Cu-Mg alloy by controlled ageing process[J]. Phil. Mag. Lett., 2019, 99(07): 235
doi: 10.1080/09500839.2019.1662960
|
6 |
Qu F J, Xiao B L, Cao Y, et al. Effect of aging on corrosion resistance of 2024 aluminum alloy[J]. Nonferrous Metals Processing, 2020, 49(05): 53
|
6 |
曲凤娇, 肖宝靓, 曹阳 等. 时效处理对2024铝合金腐蚀性能的影响[J]. 有色金属加工, 2020, 49(05): 53
|
7 |
Sun L, Niu F J, Wu C L, et al. Influence of precipitation microstructure change on the stress corrosion behavior of AA2024 aluminum alloy[J]. Rare Metal Mat. Eng., 2019, 48(09): 2944
|
7 |
孙 丽, 牛凤姣, 伍翠兰 等. 时效析出行为的改变对AA2024铝合金应力腐蚀行为的影响[J]. 稀有金属材料与工程, 2019, 48(09): 2944
|
8 |
Barros A, Cruz C, Silva A P, et al. Length scale of solidification microstructure tailoring corrosion resistance and microhardness in T6 heat treatment of an Al-Cu-Mg alloy[J]. Corros. Eng. Sci. Techn., 2020, 55(06): 471
doi: 10.1080/1478422X.2020.1742410
|
9 |
Zuiko I, Kaibyshev R. Aging behavior of an Al-Cu-Mg alloy[J]. J. Alloy. Compd., 2018, 759: 108
doi: 10.1016/j.jallcom.2018.05.053
|
10 |
Li H, Zhou Y, Wang Z X. Effect of aging state and Cu content on intergranular corrosion sensitivity of Al-Cu alloy[J]. Hot Working Technology, 2020: 1
|
10 |
李 海, 周 洋, 王芝秀. 时效状态及Cu含量对Al-Cu合金晶间腐蚀敏感性的影响[J]. 热加工工艺, 2020: 1
|
11 |
Zhan X, Li H Z, Liang X P, et al. Effect of non-isothermal aging on intergranular corrosion and mechanical properties of 2A14 aluminum alloy[J]. Min. Metall. Eng., 2018, 38(06): 139
|
11 |
詹 鑫, 李慧中, 粱霄鹏 等. 非等温时效对2A14铝合金晶间腐蚀和力学性能的影响[J]. 矿冶工程, 2018, 38(06): 139
|
12 |
Reda Y, Abdel-Karim R, Elmahallawi I. Improvements in mechanical and stress corrosion cracking properties in Al-alloy 7075 via retrogression and reaging[J]. Mat. Sci. Eng. A-Struct., 2008, 485(01-02): 468
doi: 10.1016/j.msea.2007.08.025
|
13 |
Wu Y P, He Z Y, Zhou Z G, et al. Effect of non-isothermal retrogression and re-aging treatments on the microstructure and mechanical properties of 7050 alloy[J]. Mater. Rev., 2019, 33(S2): 394
|
13 |
吴懿萍, 何臻毅, 周志纲 等. 非等温回归再时效对7050铝合金组织与力学性能的影响[J]. 材料导报, 2019, 33(S2): 394
|
14 |
Su R M, Qu Y D, Li X, et al. Low-temperature retrogression of spray formed 7075 alloy[J]. Chin. J. Nonferrous. Met., 2016, 26(12):2523
doi: 10.1016/S1003-6326(16)64378-9
|
14 |
苏睿明, 曲迎东, 李想 等. 喷射态7075合金欠时效低温回归处理[J]. 中国有色金属学报, 2016, 26(12): 2523
|
15 |
Peng G S, Chen K H, Chen S Y, et al. Influence of dual retrogression and re-aging temper on microstructure, strength and exfoliation corrosion behavior of Al-Zn-Mg-Cu alloy[J]. T. Nonferr. Metal. Soc., 2012, 22(04): 803
doi: 10.1016/S1003-6326(11)61248-X
|
16 |
Gong J, Wang M P, Zhang Q, et al. Influence of retrogression and re-aging treatment on intergranular and exfoliation corrosion of 1973 aluminum alloy[J]. Journal of Central South University (Science and Technology), 2012, 43(07): 2520
|
16 |
龚 静, 汪明朴, 张 茜 等. RRA处理对1973铝合金晶间腐蚀与剥蚀的影响[J]. 中南大学学报(自然科学版), 2012, 43(07): 2520
|
17 |
Wang X, Liu C P, Lv H B, et al. Effect of retrogression reaging on microstructure and electrochemical corrosion resistance of 6082 aluminum alloy[J]. Special Casting & Nonferrous Alloys, 2019, 39(01): 84
|
17 |
王 鑫, 刘春鹏, 吕海波 等. 回归再时效对6082合金组织及电化学腐蚀性的影响[J]. 特种铸造及有色合金, 2019, 39(01): 84
|
18 |
Zhao G, Liu C M, Zhu L Y, et al. Retrogression and reaging treatments of 2014 alloy[J]. Journal of Materials and Metallurgy, 2003, (03): 210
|
18 |
赵 刚, 刘春明, 朱丽颖 等. 2014合金的回归再时效[J]. 材料与冶金学报, 2003, (03): 210
|
19 |
Yuan Z S, Lu Z, Xie Y H, et al. Effects of RRA treatments on microstructures and properties of a new high-strength aluminum-lithium alloy-2A97[J]. Chinese J. Aeronaut., 2007, 20(02): 187
doi: 10.1016/S1000-9361(07)60031-4
|
20 |
Ward N, Tran A, Abad A, et al. The effects of retrogression and reaging on aluminum alloy 2195[J]. J. Mater. Eng. Perform., 2011, 20(06): 1003
doi: 10.1007/s11665-010-9739-5
|
21 |
Ghosh K S, Tripati K. Microstructural characterization and electrochemical behavior of AA2014 Al-Cu-Mg-Si alloy of various tempers[J]. J. Mater. Eng. Perform., 2018, 27(11): 5926
doi: 10.1007/s11665-018-3694-y
|
22 |
Chen S Y, Chen K H, Peng G S, et al. Effect of heat treatment on strength, exfoliation corrosion and electrochemical behavior of 7085 aluminum alloy[J]. Mater. Design, 2012, 35: 93
doi: 10.1016/j.matdes.2011.09.033
|
23 |
Zhang J Q. Electrochemical Testing Technique[M]. Beijing: Chemical Industry Press, 2010
|
23 |
张鉴清. 电化学测试技术[M]. 北京: 化学工业出版社, 2010
|
24 |
Wen L, Wang Y M, Zhou Y, et al. Corrosion evaluation of microarc oxidation coatings formed on 2024 aluminium alloy[J]. Corros. Sci., 2010, 52 (08):2687
doi: 10.1016/j.corsci.2010.04.022
|
25 |
Wang S C, Starink M J. Two types of S phase precipitates in Al-Cu-Mg alloys[J]. Acta Mater., 2007, 55(03): 933
doi: 10.1016/j.actamat.2006.09.015
|
26 |
Wang S C, Starink M J. Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg-(Li) based alloys[J]. Acta Mater., 2005, 50(04):193
|
27 |
Parel T S, Wang S C, Starink M J. Hardening of an Al-Cu-Mg alloy containing types I and II S phase precipitates[J]. Mater. Design, 2010, 31:S2
doi: 10.1016/j.matdes.2009.12.048
|
28 |
Wang S C, Starink M J. The assessment of GPB2/S'' structures in Al-Cu-Mg alloys[J]. Mat. Sci. Eng. A-Struct., 2004, 386(1-2): 156
doi: 10.1016/S0921-5093(04)00913-X
|
29 |
Li H Z, Liu R M, Liang X P, et al. Effect of pre-deformation on microstructures and mechanical properties of high purity Al-Cu-Mg alloy[J]. T. Nonferr. Metal. Soc., 2016, 26 (06): 1482
doi: 10.1016/S1003-6326(16)64253-X
|
30 |
Marceau R K W, Sha G, Lumley R N, et al. Evolution of solute clustering in Al-Cu-Mg alloys during secondary ageing[J]. Acta Mater., 2010, 58: 1795
doi: 10.1016/j.actamat.2009.11.021
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|