Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (11): 837-845    DOI: 10.11901/1005.3093.2022.584
  研究论文 本期目录 | 过刊浏览 |
长期服役P91钢蒸汽管道接头的显微组织和拉伸变形行为
赵海1, 刘恩泽2(), 熊诗琪2, 田成川1, 郦晓慧1, 王巍麟1
1.华电电力科学研究院有限公司 杭州 310030
2.中国科学院金属研究所 沈阳 110016
Microstructure and Tensile Deformation Behavior of Welded Joints of P91 Steel for Steam Pipeline in Long-term Service
ZHAO Hai1, XIONG Shiqi2(), LIU Enze2, TIAN Chengchuan1, LI Xiaohui1, WANG Weilin1
1.Huadian Electric Power Research Institute Co., Ltd., Hangzhou 310030, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

赵海, 刘恩泽, 熊诗琪, 田成川, 郦晓慧, 王巍麟. 长期服役P91钢蒸汽管道接头的显微组织和拉伸变形行为[J]. 材料研究学报, 2023, 37(11): 837-845.
Hai ZHAO, Shiqi XIONG, Enze LIU, Chengchuan TIAN, Xiaohui LI, Weilin WANG. Microstructure and Tensile Deformation Behavior of Welded Joints of P91 Steel for Steam Pipeline in Long-term Service[J]. Chinese Journal of Materials Research, 2023, 37(11): 837-845.

全文: PDF(16213 KB)   HTML
摘要: 

观察服役136000 h的P91钢管接头不同部位(母材、热影响区、焊缝)的显微组织并测量其拉伸变形行为,与未服役的P91钢母材对比研究了长期服役P91钢接头的组织老化和力学性能的退化及其机制。结果表明,可用硬度判定在线服役的P91钢管接头组织的老化和力学性能的退化。与未服役钢管比较,长期服役钢管的焊接接头各区域马氏体的分解和碳化物的粗化,使马氏体强化、沉淀强化和固溶强化的效果明显降低,使各区域的硬度、室温和高温拉伸性能退化。在长期服役过程中焊缝区域的硬度、室温和高温拉伸性能其退化最为显著。服役前焊接过程中产生的热循环严重回火和长期高温服役的耦合作用,是P91钢管焊缝力学性能显著退化的重要原因。

关键词 金属材料长期服役P91钢接头焊缝热影响区显微组织拉伸变形行为    
Abstract

The microstructure and tensile deformation behavior of different zones (base metal, heat affected zone and weld zone) of joints of P91 steel pipe before after 136000 hours of service as steam pipeline were comparatively studied by means of hardness tester, tensile tests at 25 and 545℃, metalloscopy, SEM and TEM+EDS etc. The results show that the hardness test results can reflect the degradation behavior of tensile properties and the aging process of P91 steel joints. Compared with non-service steel pipes, the martensite decomposition and carbide coarsening behavior in each zone of welded joints of long-term serviced steel pipes obviously weaken the effect of martensite strengthening, precipitation strengthening and solution strengthening, and finally lead to the degradation of hardness, tensile properties at room temperature and high temperature in each zone. Among others, the hardness of weld zone and the relevant room temperature- and high temperature-tensile properties are most significantly degraded due to long-term service. The synergistic effect of the thermal cycling induced severe tempering during welding process with the long-term high temperature service may be an important cause for the significant degradation of the mechanical properties of P91 steel pipe welds.

Key wordsmetallic materials    P91 steel joint in long-term service    weld zone    heat affected zone    microstructure    tensile deformation behavior
收稿日期: 2022-11-04     
ZTFLH:  TG407  
基金资助:国家自然科学基金(51871043);华电电力科学研究院重点项目(CHDKJ20-01-92)
通讯作者: 刘恩泽,研究员,nzliu@imr.ac.cn,研究方向为高温结构材料
Corresponding author: LIU Enze, Tel: (024)23971143, E-mail: nzliu@imr.ac.cn
作者简介: 赵海,男,1980年生,硕士
图1  长期高温在线服役P91钢管接头的宏观形貌
CSiMnSPCrMoVNbFe
NBM0.1060.4020.2980.0020.0048.5121.0350.2240.091Bal.
BM0.0990.3920.2960.0020.0058.4871.0380.2290.087Bal.
SHAZ0.1030.4030.2990.0030.0048.5041.0420.2350.092Bal.
WZ0.1410.2230.8630.0060.0078.8271.024-0.053Bal.
BHAZ0.1010.3850.3040.0020.0048.4971.0390.2310.085Bal.
表1  未服役钢管母材和服役钢管接头各区域的化学成分
图2  长期高温在线服役P91钢管接头的硬度分布
图3  未服役钢管母材和高温长期在线服役钢管接头各区域的显微组织
图4  未服役钢管母材和服役钢管接头各区域的室温拉伸性能
图5  未服役钢管母材和服役钢管接头各区域室温拉伸的应力-应变曲线
图6  未服役钢管母材和服役钢管接头各区域的高温拉伸性能
图7  未服役钢管母材和服役钢管接头各区域的高温拉伸应力-应变曲线
图8  未服役钢管母材和服役钢管接头各区域室温拉伸断口的形貌
图9  未服役钢管母材和服役钢管接头各区域的高温拉伸断口形貌
图10  未服役钢管母材和服役钢管接头各区域碳化物的扫描电镜形貌
图11  未服役钢管母材和服役钢管接头各区域碳化物的透射电镜形貌
图12  未服役钢管母材和服役钢管接头焊缝处碳化物的形貌和成分
1 Liu C S, Cui S G. Weldability and welding technology of P91 steel [J]. Weld. Technol., 2022, 51(1): 60
1 刘持森, 崔树国. P91钢的焊接性及其焊接工艺 [J]. 焊接技术, 2022, 51(1): 60
2 Pandey C, Giri A, Mahapatra M M. Evolution of phases in P91 steel in various heat treatment conditions and their effect on microstructure stability and mechanical properties [J]. Mater. Sci. Eng. A, 2016, 664: 58
doi: 10.1016/j.msea.2016.03.132
3 Li B. Analysis of creep behavior of P91 steel at high temperature based on deformation mechanism [D]. Xian: Northwest University, 2021
3 李 博. 基于变形机制的P91钢高温蠕变行为分析 [D]. 西安: 西北大学, 2021
4 Pandey C, Mahapatra M M, Kumar P, et al. Homogenization of P91 weldments using varying normalizing and tempering treatment [J]. Mater. Sci. Eng. A, 2017, 710: 86
doi: 10.1016/j.msea.2017.10.086
5 Wang K Z, Hao Z Y, Hu F Z, et al. Optimization on heat-treatment process of P91 steel for high pressure bolier tubes [J]. China Metall., 2018, 28(5): 58
5 汪开忠, 郝震宇, 胡芳忠 等. 高压锅炉管用P91钢热处理工艺优化 [J]. 中国冶金, 2018, 28(5): 58
6 Li B, Liu X B, Zhu L, et al. Deformation-mechanism-based modeling of creep behavior of P91 steel [J]. J. Mech. Strength, 2022, 44(1): 198
6 李 博, 刘新宝, 朱 麟 等. 基于变形机制的P91钢蠕变行为分析 [J]. 机械强度, 2022, 44(1): 198
7 Yang X. Microstructure aging, property degardation and residual creep life evaluation of high-chromium martensitic heat-resistant steel [D]. Qinghuangdao: Yanshan University, 2019
7 杨 旭. 高铬马氏体耐热钢组织老化、性能退化及剩余寿命评估 [D]. 秦皇岛: 燕山大学, 2019
8 Sun X. Effect of martensite weld microstructure on welding cold crack sensitivity of T91/P91 steel [J]. Welded Pipe and Tube, 2021, 44(11): 7
8 孙 咸. 马氏体焊缝组织对T91/P91钢焊接冷裂纹敏感性的影响 [J]. 焊管, 2021, 44(11): 7
9 Xia Z X, Wang C Y, Zhao Y F, et al. Laves phase formation and its effect on mechanical properties in P91 steel [J]. Acta Metall. Sin., 2015, 28(10): 1238
doi: 10.1007/s40195-015-0318-5
10 Zhang Z W, Li X M, Du B S, et al. Microstructure evolution of P92 steel weld metal after servicing at high temperature for 50000 h [J]. Hot Work. Technol., 2017, 46(19): 208
10 张忠文, 李新梅, 杜宝帅 等. 高温服役50000 h后P92钢焊缝金属组织变化 [J]. 热加工工艺, 2017, 46(19): 208
11 Zhang W N. 600 MW subcritical unit T91 steel welded joints failure analysis [J]. Sci. Technol. & Innovation, 2015, (2): 74
11 张伟妮. 600 MW亚临界机组T91钢焊接接头失效分析 [J]. 科技与创新, 2015, (2): 74
12 Zhou L, Jiang X J, Shang J L, et al. Microstructure and properties of welded joint of new martensitic heat resistant steel after long service [J]. Weld. Technol., 2022, 51(3): 46
12 周 龙, 蒋欣军, 尚建路 等. 长期服役后新型马氏体耐热钢焊接接头的组织及性能 [J]. 焊接技术, 2022, 51(3): 46
13 Lv Y H. Exploration on application of hardness testing technology in power station boiler inspection [J]. Bolier Manuf., 2019, (1): 62
13 吕永红. 电站锅炉检验中硬度检测技术的应用探究 [J]. 锅炉制造, 2019, (1): 62
14 Zhang Q L, Jin X F, Zhai M J, et al. Conversion relationship between the leeb hardness and brinell hardness of P22 steel [J]. Phys. Test. Chem. Anal., 2021, 57(10): 18
14 张启礼, 金学峰, 翟孟杰 等. P22钢的里氏硬度与布氏硬度的转换关系 [J]. 理化检验-物理分册, 2021, 57(10): 18
doi: 10.11973/lhjy-wl202110004
15 Wang J H, Wang Y S, Liu F G, et al. Study on non-uniform softening and formation mechanism of P91 steel for high temperature steam pipeline during service [J]. Foundry Technol., 2021, 42(6):517
15 王金海, 王艳松, 刘福广 等. 高温蒸汽管道用P91钢服役过程不均匀软化及形成机制研究 [J]. 铸造技术, 2021, 42(6): 517
16 Pandey C. The characterization of soft fine-grained heat-affected zones in P91 weldments under creep exposure conditions [J]. Steel Res. Inter., 2020, 91(1): 1900342
doi: 10.1002/srin.v91.1
17 Fan D L, Wang Z W, Ju G Y. Microstructure and properties of P91 steel pipeline in abnormal low hardness parts [J]. Heat Treat. Met., 2020, 45(3): 1
17 范德良, 王志武, 句光宇. P91钢管道异常低硬度部位的组织和性能 [J]. 金属热处理, 2020, 45(3): 1
doi: 10.13251/j.issn.0254-6051.2020.03.001
18 Wu S Q, Han T, Jiang S K, et al. Strenfth degradation behavior of P91 steel for a supercritical unit [J]. Mater. Mech. Eng., 2021, 45(1):28
18 吴术全, 韩 涛, 姜世凯 等. 某超临界机组用P91钢的强度退化行为 [J]. 机械工程材料, 2021, 45(1): 28
doi: 10.11973/jxgccl202101005
19 Peng Y, Peng X N, Zhang X M, et al. Microstructure and mechanical properties of GMAW weld metal of 890 MPa class steel [J]. J. Iron & Steel Res. Inter., 2014, 21(5): 539
20 Xu L Q, Zhang D T, Liu Y C, et al. Precipitation behavior and martensite lath coarsening during tempering of T/P92 ferritic heat-resistant steel [J]. Inter. J. Miner. Metall. & Mater., 2014, 21(5): 438
21 Wang Y, He W J, Zeng Q F, et al. Effects of multiple post weld heat treatments on microstructure and precipitate of fine-grained heat affected zone of P91 weld [J]. Steel Res. Inter., 2019, 90(7): 1800607
doi: 10.1002/srin.v90.7
22 Hua Y, Chen J G, Yu L M, et al. Microstructure evolution and mechanical properties of dissimilar material diffusion-bonded joint for high Cr ferrite heat-resistant steel and austenitic heat-resistant steel [J]. Acta. Metall. Sin., 2022, 58(2): 141
doi: 10.11900/0412.1961.2020.00446
22 化 雨, 陈建国, 余黎明 等. 高Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能 [J]. 金属学报, 2022, 58(2): 141
23 Peng Z F, Liu S, Yang C, et al. The effect of phase parameter variation on hardness of P91 components after service exposures at 530-550℃ [J]. Acta Mater., 2017, 143: 141
doi: 10.1016/j.actamat.2017.10.010
24 Deng H. Microstructure, properties and safety evaluation of low hardness P91 steel tube after long service [J]. Heat Treat. Met., 2021, 46(12): 209
doi: 10.13251/j.issn.0254-6051.2021.12.034
24 邓 辉. 低硬度P91钢管长时服役后的组织性能和安全性评价 [J]. 金属热处理, 2021, 46(12): 209
25 Junek M, Svobodova M, Horvath J, et al. The Effect of long-term ageing on microstructural properties and Laves phase precipitation of welded P91 and P92 steels [J]. Steel Res. Inter., 2022, 93(2): 2100311
doi: 10.1002/srin.v93.2
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.