材料研究学报, 2023, 37(11): 837-845 DOI: 10.11901/1005.3093.2022.584

研究论文

长期服役P91钢蒸汽管道接头的显微组织和拉伸变形行为

赵海1, 刘恩泽,2, 熊诗琪2, 田成川1, 郦晓慧1, 王巍麟1

1.华电电力科学研究院有限公司 杭州 310030

2.中国科学院金属研究所 沈阳 110016

Microstructure and Tensile Deformation Behavior of Welded Joints of P91 Steel for Steam Pipeline in Long-term Service

ZHAO Hai1, XIONG Shiqi,2, LIU Enze2, TIAN Chengchuan1, LI Xiaohui1, WANG Weilin1

1.Huadian Electric Power Research Institute Co., Ltd., Hangzhou 310030, China

2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

通讯作者: 刘恩泽,研究员,nzliu@imr.ac.cn,研究方向为高温结构材料

责任编辑: 黄青

收稿日期: 2022-11-04   修回日期: 2023-05-17  

基金资助: 国家自然科学基金(51871043)
华电电力科学研究院重点项目(CHDKJ20-01-92)

Corresponding authors: LIU Enze, Tel:(024)23971143, E-mail:nzliu@imr.ac.cn

Received: 2022-11-04   Revised: 2023-05-17  

Fund supported: National Natural Science Foundation of China(51871043)
Key Projects of Huadian Electric Power Research Institute(CHDKJ20-01-92)

作者简介 About authors

赵海,男,1980年生,硕士

摘要

观察服役136000 h的P91钢管接头不同部位(母材、热影响区、焊缝)的显微组织并测量其拉伸变形行为,与未服役的P91钢母材对比研究了长期服役P91钢接头的组织老化和力学性能的退化及其机制。结果表明,可用硬度判定在线服役的P91钢管接头组织的老化和力学性能的退化。与未服役钢管比较,长期服役钢管的焊接接头各区域马氏体的分解和碳化物的粗化,使马氏体强化、沉淀强化和固溶强化的效果明显降低,使各区域的硬度、室温和高温拉伸性能退化。在长期服役过程中焊缝区域的硬度、室温和高温拉伸性能其退化最为显著。服役前焊接过程中产生的热循环严重回火和长期高温服役的耦合作用,是P91钢管焊缝力学性能显著退化的重要原因。

关键词: 金属材料; 长期服役P91钢接头; 焊缝; 热影响区; 显微组织; 拉伸变形行为

Abstract

The microstructure and tensile deformation behavior of different zones (base metal, heat affected zone and weld zone) of joints of P91 steel pipe before after 136000 hours of service as steam pipeline were comparatively studied by means of hardness tester, tensile tests at 25 and 545℃, metalloscopy, SEM and TEM+EDS etc. The results show that the hardness test results can reflect the degradation behavior of tensile properties and the aging process of P91 steel joints. Compared with non-service steel pipes, the martensite decomposition and carbide coarsening behavior in each zone of welded joints of long-term serviced steel pipes obviously weaken the effect of martensite strengthening, precipitation strengthening and solution strengthening, and finally lead to the degradation of hardness, tensile properties at room temperature and high temperature in each zone. Among others, the hardness of weld zone and the relevant room temperature- and high temperature-tensile properties are most significantly degraded due to long-term service. The synergistic effect of the thermal cycling induced severe tempering during welding process with the long-term high temperature service may be an important cause for the significant degradation of the mechanical properties of P91 steel pipe welds.

Keywords: metallic materials; P91 steel joint in long-term service; weld zone; heat affected zone; microstructure; tensile deformation behavior

PDF (16213KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

赵海, 刘恩泽, 熊诗琪, 田成川, 郦晓慧, 王巍麟. 长期服役P91钢蒸汽管道接头的显微组织和拉伸变形行为[J]. 材料研究学报, 2023, 37(11): 837-845 DOI:10.11901/1005.3093.2022.584

ZHAO Hai, XIONG Shiqi, LIU Enze, TIAN Chengchuan, LI Xiaohui, WANG Weilin. Microstructure and Tensile Deformation Behavior of Welded Joints of P91 Steel for Steam Pipeline in Long-term Service[J]. Chinese Journal of Materials Research, 2023, 37(11): 837-845 DOI:10.11901/1005.3093.2022.584

P91钢是改良型9Cr-1Mo耐热钢,具有理想的热强性、良好的持久强度和抗高温蠕变能力,广泛用于制造电站锅炉的蒸汽管道和高温过热器以及再热器等关键部件[1~3]。P91钢的供货状态为正火+回火态,其显微组织包含回火马氏体和少量弥散分布于晶界和晶内的碳化物。因此,该钢种的强化机制主要是马氏体强化和析出强化[4,5]。同时,固溶强化和位错强化对提高P91钢的力学性能也有重要的作用[6,7]

现代大型电力蒸汽管道的熔焊工艺,不可避免地会改变使焊缝(Welded zone, WZ)及其附近的显微组织 [8]。尽管蒸汽管道在建造过程中均采用焊后热处理以实现强韧性改性,但是长期在高温、高压条件下服役必然使P91钢管及其焊接部位的显微组织和力学性能老化。在焊接过程中热循环已经使焊缝及热影响区(Heat affected zone, HAZ)显微组织严重劣化,严重影响整个管道的服役寿命和安全。

P91等材料的焊接接头在长期高温条件下服役,焊缝、热影响区和母材(Base metal, BM)的显微组织和力学性都发生了不同程度的老化。在焊接过程中高温将已固化的焊缝组织重新加热,焊缝和热影响区经受反复、不同程度的高温回火,马氏体板条的尺寸已明显增大,在马氏体板条边界析出了许多小尺寸碳化物。在长期服役过程中碳化物在马氏体边界析出和长大,严重地影响焊缝的力学性能,使焊缝成为蒸汽管道的最薄弱部位[9~12]。因此,在线监测和评估P91钢管道焊接部位的老化程度,对于现代电力系统的安全运行极为必要。

评价电力蒸汽管道服役性能的退化程度,可用里氏硬度测试法[13,14]。用该方法可有效判定显微组织和力学性能明显变化的焊缝的安全服役状态,但是难以判别硬度变化不明显的接头部位性能的退化程度。鉴于此,本文对比研究国内某电力系统未服役P91钢管母材和在线服役136000小时的P91钢管焊接接头母材、热影响区和焊缝的显微组织、室温和高温力学性能及变形行为,并探究高温长期服役使P91钢管接头各区域显微组织和力学性能老化的机制。

1 实验方法

1.1 实验材料

实验用材料取自国内某电力系统未服役的P91钢管母材和在线服役136000小时的P91钢管的焊接接头。服役钢管由直管(281 mm×56.15 mm)和弯管(272 mm×69.95 mm)焊接而成,接头区域由母材、直管热影响区(Heat affected zone of straight pipe, SHAZ)、焊缝和弯管热影响区(Heat affected zone of bent pipe, BHAZ) 四部分组成,其宏观形貌如图1所示。接头的服役温度和压力,分别为541℃和17.47 MPa。此外,未服役钢管母材(Base metal of non-service steel pipe, NBM)和服役钢管接头各区域的化学成分列于表1

图1

图1   长期高温在线服役P91钢管接头的宏观形貌

Fig.1   Macroscopic morphology of P91 steel pipe joint in long-term online service at high temperature


表1   未服役钢管母材和服役钢管接头各区域的化学成分

Table 1  Chemical composition of P91 base metal of non-service steel pipe and each area of steel pipe joint in service (mass fraction,%)

CSiMnSPCrMoVNbFe
NBM0.1060.4020.2980.0020.0048.5121.0350.2240.091Bal.
BM0.0990.3920.2960.0020.0058.4871.0380.2290.087Bal.
SHAZ0.1030.4030.2990.0030.0048.5041.0420.2350.092Bal.
WZ0.1410.2230.8630.0060.0078.8271.024-0.053Bal.
BHAZ0.1010.3850.3040.0020.0048.4971.0390.2310.085Bal.

新窗口打开| 下载CSV


1.2 性能表征

在未服役钢管母材和服役钢管接头各区域切取金相试样,将其研磨和抛光后用5%硝酸酒精溶液腐蚀15 s,然后用Nova NanoSEM 50型扫描电镜观察其显微组织、碳化物数量和尺寸。

从各拉伸试样上切取厚度为0.5 mm的薄片,机械减薄至90 μm后冲成直径为3 mm的小圆片,用砂纸打磨至30~40 μm后进行电解双喷制成透射试样。双喷液为7%高氯酸酒精溶液,电解电压和电流分别为10~15 mV和50~60 mA。用JEM-2100F型场发射透射电镜和能谱仪检测碳化物类型及其分布,并观察各区域位错密度的变化。

在未服役钢管母材和服役钢管接头各区域切取测试硬度和拉伸实验的试样。用EQUOTIP BAMBINO 2型里氏硬度计测定硬度。用AG-X100kN和AG-XPLUS100kN型电子万能试验机分别进行室温和高温拉伸实验,拉伸速率均为4 mm/min,实验温度分别为25和545℃。用JXA-8530F型场发射扫描电镜观察试样的室温和高温拉伸断口的形貌。

2 实验结果

2.1 长期服役对接头各区域硬度和显微组织的影响

图2给出了服役钢管接头的硬度分布。可以看出,焊缝、直管和弯管热影响区的硬度相近(约为410~420HL),都明显低于未服役钢管母材的硬度(约为470HL)。这表明,在高温下长期服役使接头各区域硬度发生不同程度的退化,焊缝和热影响区的退化更为严重。

图2

图2   长期高温在线服役P91钢管接头的硬度分布

Fig.2   Hardness distribution of P91 steel pipe joint in long-term online service at high temperature


图3给出了未服役钢管母材和服役钢管接头各区域的显微组织。可以看出,服役前后钢管显微组织都以回火马氏体为主。服役前的钢管晶粒细小均匀,未见明显的碳化物颗粒;服役后的钢管接头,母材、直管和弯管热影响区的晶粒尺寸未见明显变化,但是焊缝处的马氏体严重分解。同时,母材和焊缝的马氏体边界处析出的碳化物数量明显增多。这表明,经长时间高温服役后,接头各区域显微组织均出现一定程度的老化,焊缝的老化程度更高。

图3

图3   未服役钢管母材和高温长期在线服役钢管接头各区域的显微组织

Fig.3   Microstructure in base metal of non-service steel pipe and steel pipe joint in long-term online service at high temperature: (a) NBM, (b) BM, (c) SHAZ, (d) WZ, (e) BHAZ


2.2 长期服役对接头各区域拉伸性能的影响

图4图5分别给出了未服役钢管母材和服役钢管接头各区域的室温拉伸性能和应力-应变曲线。可以看出,未服役钢管母材的室温屈服强度和抗拉强度都比较高,分别为588和709 MPa。长期高温在线服役后的接头,其各区域的室温屈服强度和抗拉强度都有所降低。焊缝的室温屈服强度和抗拉强度最低,分别为354和554 MPa,比未服役钢管母材分别降低了39.8%和21.9%。未服役钢管母材的室温伸长率最低(为23.1%),接头各区域的室温伸长率都略有提高。

图4

图4   未服役钢管母材和服役钢管接头各区域的室温拉伸性能

Fig.4   Room temperature tensile property in base metal of non-service steel pipe and each area of steel pipe joint in service: (a) strength, (b) elongation


图5

图5   未服役钢管母材和服役钢管接头各区域室温拉伸的应力-应变曲线

Fig.5   room temperature tensile stress-stain curve of base metal of non-service steel pipe and each area of steel pipe joint in service during


图6图7分别给出了未服役钢管母材和服役钢管接头各区域的高温拉伸性能和应力-应变曲线。可以看出,未服役钢管母材的高温拉伸性能最好,屈服强度、抗拉强度和伸长率分别为327 MPa、353 MPa和37.4%。在高温下长期在线服役的接头,各区域的高温强度和伸长率都不同程度地降低,焊缝处尤为严重。与未服役钢管母材相比,屈服强度、抗拉强度和伸长率分别降低了39.8%、13.9%和27.8%。

图6

图6   未服役钢管母材和服役钢管接头各区域的高温拉伸性能

Fig.6   High temperature tensile property of base metal of non-service steel pipe and each area of steel pipe joint in service (a) strength, (b) elongation


图7

图7   未服役钢管母材和服役钢管接头各区域的高温拉伸应力-应变曲线

Fig.7   High temperature tensile stress-strain curve of base metal of non-service steel pipe and each area of steel pipe joint in service during


2.3 长期服役对接头各区域断裂行为的影响

图8分别给出了未服役钢管母材和服役钢管接头各区域的室温拉伸断口形貌。可以看出,未服役钢管母材的断裂面出现大量较深的韧窝,断裂形式为韧窝断裂。母材、直管和弯管热影响区的断裂面出现浅韧窝和准解理,其形式为韧窝和准解理复合断裂。焊缝的断裂面以韧窝为主还有少量准解理,尽管与接头其它区域的韧窝尺寸相比有所增大,但是仍比未服役钢管母材的韧窝尺寸小。这表明,长期高温服役后的接头各区域的断裂特征均发生变化,断裂形式由韧窝断裂向韧窝和准解理复合断裂转变。

图8

图8   未服役钢管母材和服役钢管接头各区域室温拉伸断口的形貌

Fig.8   Room temperature tensile fracture morphology of base metal of non-service steel pipe and each area of steel pipe joint in service (a) NBM, (b) BM, (c) SHAZ, (d) WZ, (e) BHAZ


图9分别给出了未服役钢管母材和服役钢管接头各区域的高温拉伸断裂形貌。可以看出,未服役钢管母材的断裂面出现许多韧窝,为韧窝断裂。接头各区域的断裂面差异不大,与未服役钢管母材相比韧窝数量明显减少,还出现少量准解理,断裂形式为韧窝和准解理复合断裂。

图9

图9   未服役钢管母材和服役钢管接头各区域的高温拉伸断口形貌

Fig.9   High temperature tensile fracture morphology in base metal of non-service steel pipe and each area of steel pipe joint in service (a) NBM, (b) BM, (c) SHAZ, (d) WZ, (e) BHAZ


2.4 长期服役对接头各区域碳化物和位错密度的影响

P91耐热钢管经正火和回火热处理后,显微组织由回火马氏体和少量碳化物组成。在长期高温在线服役后的钢管中,碳化物的数量、尺寸、形貌和析出位置都发生变化,位错密度也发生变化[15,16]图10图11分别给出了用扫描电镜和透射电镜观察的未服役钢管母材和服役钢管接头各区域的碳化物组织。由图10可见,未服役钢管母材的碳化物数量较少,长期高温服役后接头各区域的碳化物发生不同程度的粗化,数量也有所增多。焊缝中碳化物的数量更多、尺寸更大,沿马氏体边界连续析出。

图10

图10   未服役钢管母材和服役钢管接头各区域碳化物的扫描电镜形貌

Fig.10   Scanning electron microscope morphology of carbides in base metal of non-service steel pipe and each area of steel pipe joint in service (a) NBM, (b) BM, (c) SHAZ, (d) WZ, (e) BHAZ


图11可见,未服役钢管母材的碳化物多呈椭球状,主要分布在晶内。在长期高温服役后的接头中碳化物由椭球状转变为短棒状,且沿马氏体边界析出的比例增大,焊缝的碳化物沿马氏体板条边界连续析出。此外,与未服役的钢管母材相比,服役接头各区域的位错密度均明显降低,焊缝处降低的程度更高。

图11

图11   未服役钢管母材和服役钢管接头各区域碳化物的透射电镜形貌

Fig.11   Transmission electron microscope morphology of carbides in base metal of non-service steel pipe and each area of steel pipe joint in service (a) NBM, (b) BM, (c) SHAZ, (d) WZ, (e) BHAZ


图12给出了用能谱仪检测的未服役钢管母材和服役钢管接头焊缝的碳化物类型和成分。可以看出,未服役钢管母材的碳化物类型与接头焊缝相同,主要为Fe、Cr和Mo的M23C6[17]。但是,碳化物组成元素的含量发生了变化,焊缝的碳化物中Fe、Cr和Mo的含量明显提高。此外,接头焊缝处碳化物中Cr和Mo的含量明显高于基体。这表明,长期高温服役使固溶元素Cr和Mo向碳化物偏聚,使碳化物不断熟化长大。

图12

图12   未服役钢管母材和服役钢管接头焊缝处碳化物的形貌和成分

Fig.12   Morphology and composition of carbides in base metal of non-service steel pipe and weld zone of steel pipe joint in service (a, b) NBM, (c, d) WZ


2.5 接头各区域力学性能的退化机制

长期高温服役钢管接头各区域显微组织和力学性能都出现不同程度的老化,焊缝的老化程度更为严重。长期服役过程中马氏体逐渐分解,马氏体钢的强度和硬度逐渐降低[18,19]。同时,马氏体分解使位错密度降低。经典硬化理论指出,位错密度降低使位错强化对强度的贡献减小[20~22]。长期服役不仅使马氏体逐渐分解,还使碳化物发生Ostwald熟化逐渐长大,碳化物粗化使析出相对强度的贡献减小[23,24]。同时,晶界碳化物M23C6的析出和长大消耗基体的固溶元素Fe、Cr、Mo,使基体的固溶强化降低[25]

以上结果表明,长期服役使P91钢管接头中的马氏体分解、碳化物的尺寸增大、位错密度降低,马氏体强化、位错强化、析出强化和固溶强化对硬度和强度的贡献减小,最终导致接头各区域的硬度、室温和高温拉伸性能退化。在蒸汽管道的焊接过程中焊缝处温度最高,严重的焊接热循环回火使焊缝的显微组织相比接头其它区域发生明显的老化,长时间服役使焊缝的显微组织的老化更加严重,因此焊缝的强度明显降低。

3 结论

(1) 长期高温在线服役的P91钢管接头显微组织明显老化,各区域的硬度均不同程度降低。在线硬度测试可有效反映显微组织明显老化P91接头的室温和高温拉伸性能退化行为。

(2) 与未服役的P91钢管母材相比,高温长期在线服役的P91钢管接头各区域的马氏体分解和碳化物粗化极为明显,使钢管的马氏体强化、沉淀强化和固溶强化效果明显减弱,最终使各区域的硬度、室温和高温拉伸性能明显退化。室温和高温拉伸断裂形式均由韧窝断裂转变为韧窝和准解理复合断裂。

(3) 高温长期在线服役的P91钢管焊缝区域的硬度和室温、高温拉伸性能的退化最为显著。服役前焊接产生的热循环严重回火与长期高温服役的耦合作用,是导致P91钢管焊缝力学性能显著退化的重要原因。

参考文献

Liu C S, Cui S G.

Weldability and welding technology of P91 steel

[J]. Weld. Technol., 2022, 51(1): 60

[本文引用: 1]

刘持森, 崔树国.

P91钢的焊接性及其焊接工艺

[J]. 焊接技术, 2022, 51(1): 60

[本文引用: 1]

Pandey C, Giri A, Mahapatra M M.

Evolution of phases in P91 steel in various heat treatment conditions and their effect on microstructure stability and mechanical properties

[J]. Mater. Sci. Eng. A, 2016, 664: 58

DOI      URL    

Li B.

Analysis of creep behavior of P91 steel at high temperature based on deformation mechanism

[D]. Xian: Northwest University, 2021

[本文引用: 1]

李 博.

基于变形机制的P91钢高温蠕变行为分析

[D]. 西安: 西北大学, 2021

[本文引用: 1]

Pandey C, Mahapatra M M, Kumar P, et al.

Homogenization of P91 weldments using varying normalizing and tempering treatment

[J]. Mater. Sci. Eng. A, 2017, 710: 86

DOI      URL     [本文引用: 1]

Wang K Z, Hao Z Y, Hu F Z, et al.

Optimization on heat-treatment process of P91 steel for high pressure bolier tubes

[J]. China Metall., 2018, 28(5): 58

[本文引用: 1]

汪开忠, 郝震宇, 胡芳忠 .

高压锅炉管用P91钢热处理工艺优化

[J]. 中国冶金, 2018, 28(5): 58

[本文引用: 1]

Li B, Liu X B, Zhu L, et al.

Deformation-mechanism-based modeling of creep behavior of P91 steel

[J]. J. Mech. Strength, 2022, 44(1): 198

[本文引用: 1]

李 博, 刘新宝, 朱 麟 .

基于变形机制的P91钢蠕变行为分析

[J]. 机械强度, 2022, 44(1): 198

[本文引用: 1]

Yang X.

Microstructure aging, property degardation and residual creep life evaluation of high-chromium martensitic heat-resistant steel

[D]. Qinghuangdao: Yanshan University, 2019

[本文引用: 1]

杨 旭.

高铬马氏体耐热钢组织老化、性能退化及剩余寿命评估

[D]. 秦皇岛: 燕山大学, 2019

[本文引用: 1]

Sun X.

Effect of martensite weld microstructure on welding cold crack sensitivity of T91/P91 steel

[J]. Welded Pipe and Tube, 2021, 44(11): 7

[本文引用: 1]

孙 咸.

马氏体焊缝组织对T91/P91钢焊接冷裂纹敏感性的影响

[J]. 焊管, 2021, 44(11): 7

[本文引用: 1]

Xia Z X, Wang C Y, Zhao Y F, et al.

Laves phase formation and its effect on mechanical properties in P91 steel

[J]. Acta Metall. Sin., 2015, 28(10): 1238

DOI      URL     [本文引用: 1]

Zhang Z W, Li X M, Du B S, et al.

Microstructure evolution of P92 steel weld metal after servicing at high temperature for 50000 h

[J]. Hot Work. Technol., 2017, 46(19): 208

张忠文, 李新梅, 杜宝帅 .

高温服役50000 h后P92钢焊缝金属组织变化

[J]. 热加工工艺, 2017, 46(19): 208

Zhang W N.

600 MW subcritical unit T91 steel welded joints failure analysis

[J]. Sci. Technol. & Innovation, 2015, (2): 74

张伟妮.

600 MW亚临界机组T91钢焊接接头失效分析

[J]. 科技与创新, 2015, (2): 74

Zhou L, Jiang X J, Shang J L, et al.

Microstructure and properties of welded joint of new martensitic heat resistant steel after long service

[J]. Weld. Technol., 2022, 51(3): 46

[本文引用: 1]

周 龙, 蒋欣军, 尚建路 .

长期服役后新型马氏体耐热钢焊接接头的组织及性能

[J]. 焊接技术, 2022, 51(3): 46

[本文引用: 1]

Lv Y H.

Exploration on application of hardness testing technology in power station boiler inspection

[J]. Bolier Manuf., 2019, (1): 62

[本文引用: 1]

吕永红.

电站锅炉检验中硬度检测技术的应用探究

[J]. 锅炉制造, 2019, (1): 62

[本文引用: 1]

Zhang Q L, Jin X F, Zhai M J, et al.

Conversion relationship between the leeb hardness and brinell hardness of P22 steel

[J]. Phys. Test. Chem. Anal., 2021, 57(10): 18

[本文引用: 1]

张启礼, 金学峰, 翟孟杰 .

P22钢的里氏硬度与布氏硬度的转换关系

[J]. 理化检验-物理分册, 2021, 57(10): 18

DOI      [本文引用: 1]

在电站锅炉实际检测中,通常会将现场检测的里氏硬度转换成布氏硬度,但现有的换算关系缺乏材料针对性,且硬度范围也较窄。对P22钢进行了顶端淬火和整体热处理试验,获得硬度范围更宽、分布更均匀的里氏硬度与布氏硬度,然后建立里氏硬度与布氏硬度之间的转换关系。结果表明:P22钢的里氏硬度与布氏硬度之间呈二次回归关系,其转换关系为H<sub>BW</sub>=0. 001 6H<sub>LD</sub><sup>2</sup>-0. 66H<sub>LD</sub>+155. 7。

Wang J H, Wang Y S, Liu F G, et al.

Study on non-uniform softening and formation mechanism of P91 steel for high temperature steam pipeline during service

[J]. Foundry Technol., 2021, 42(6):517

[本文引用: 1]

王金海, 王艳松, 刘福广 .

高温蒸汽管道用P91钢服役过程不均匀软化及形成机制研究

[J]. 铸造技术, 2021, 42(6): 517

[本文引用: 1]

Pandey C.

The characterization of soft fine-grained heat-affected zones in P91 weldments under creep exposure conditions

[J]. Steel Res. Inter., 2020, 91(1): 1900342

DOI      URL     [本文引用: 1]

Fan D L, Wang Z W, Ju G Y.

Microstructure and properties of P91 steel pipeline in abnormal low hardness parts

[J]. Heat Treat. Met., 2020, 45(3): 1

[本文引用: 1]

范德良, 王志武, 句光宇.

P91钢管道异常低硬度部位的组织和性能

[J]. 金属热处理, 2020, 45(3): 1

DOI      [本文引用: 1]

对电厂运行过程中发现的P91钢主蒸汽管道的低硬度部位进行了微观组织观察、短时力学性能试验和高温持久强度试验,分析了其硬度偏低的原因。结果表明,低硬度区域P91钢组织为铁素体+析出物,位错密度较低,M<sub>23</sub>C<sub>6</sub>相在晶界处粗化聚集,同时析出新相Laves相,使得P91钢的短时力学性能和高温持久强度下降严重。

Wu S Q, Han T, Jiang S K, et al.

Strenfth degradation behavior of P91 steel for a supercritical unit

[J]. Mater. Mech. Eng., 2021, 45(1):28

[本文引用: 1]

吴术全, 韩 涛, 姜世凯 .

某超临界机组用P91钢的强度退化行为

[J]. 机械工程材料, 2021, 45(1): 28

DOI      [本文引用: 1]

从马氏体亚结构、析出相、固溶元素以及位错密度等方面探究了某超临界机组蒸汽管道用P91钢服役8.8万h后其强度下降的原因。结果表明:服役后P91钢中M<sub>23</sub>C<sub>6</sub>型碳化物的平均粒径由78.0 nm增加到190.6 nm,同时析出了平均粒径为393.2 nm的Laves相,M<sub>23</sub>C<sub>6</sub>型碳化物的粗化使得析出相对屈服强度的贡献值下降了38.7%,Laves相的析出对屈服强度的贡献很小;M<sub>23</sub>C<sub>6</sub>型碳化物的Ostwald熟化与粗大Laves相的析出消耗了基体中的碳、铬、钼、硅元素,降低了固溶强化效果;服役后P91钢中马氏体板条块尺寸与板条宽度增大,对该钢屈服强度降低有一定贡献;服役P91钢中的位错密度为6.4&#215;10<sup>13</sup> m<sup>-2</sup>,低于未服役P91钢的(9.7&#215;10<sup>13</sup> m<sup>-2</sup>),位错对基体的强化效果降低了18.8%;在所有因素的作用下,服役后P91钢的屈服强度降低了27.0%。

Peng Y, Peng X N, Zhang X M, et al.

Microstructure and mechanical properties of GMAW weld metal of 890 MPa class steel

[J]. J. Iron & Steel Res. Inter., 2014, 21(5): 539

[本文引用: 1]

Xu L Q, Zhang D T, Liu Y C, et al.

Precipitation behavior and martensite lath coarsening during tempering of T/P92 ferritic heat-resistant steel

[J]. Inter. J. Miner. Metall. & Mater., 2014, 21(5): 438

[本文引用: 1]

Wang Y, He W J, Zeng Q F, et al.

Effects of multiple post weld heat treatments on microstructure and precipitate of fine-grained heat affected zone of P91 weld

[J]. Steel Res. Inter., 2019, 90(7): 1800607

DOI      URL    

Hua Y, Chen J G, Yu L M, et al.

Microstructure evolution and mechanical properties of dissimilar material diffusion-bonded joint for high Cr ferrite heat-resistant steel and austenitic heat-resistant steel

[J]. Acta. Metall. Sin., 2022, 58(2): 141

DOI      [本文引用: 1]

High Cr ferrite heat-resistant steel has excellent geometric structure stability, low radiation swelling rate, and good corrosion resistance of liquid metal. TP347H austenitic heat-resistant steel is based on the traditional 18-8 austenitic steel with the addition of a certain amount of Nb and a small amount of N to precipitate MX-type carbonitride, which results in superior high-temperature properties. Steam with high temperature and pressure flowing through supercritical thermal power units may exhibit heterogeneous connections between high Cr ferrite and austenitic heat-resistant steel components in the supercritical thermal power units. In this study, the vacuum diffusion-bonding of dissimilar materials between high Cr ferritic and TP347H austenitic heat-resistant steel was performed, the effects of diffusion-bonding time and post weld heat treatment (PWHT) process on the microstructural evolution and mechanical properties of the diffusion-affected zone was examined. The results indicated that with the extension of diffusion-bonding time, the interfacial bonding rate gradually increased. The interaction due to the difference in deformation storage energy and dislocation slips resulted in dynamic recrystallization, and the fine grains formed at the diffusion-bonding interface evolved into a serrated interface. Fine and dispersed MX and M23C6 phases were precipitated in the austenite grain boundaries and at the grain boundaries of the diffusion-bonding zone. After PWHT, the grains in the diffusion-bonding zone were further refined, dislocations were stable, dislocation density reduced, small-angle grain boundaries increased, and element diffusion was more sufficient. Tensile tests at different temperatures showed that the fractured sites were all in the matrix, which indicates that high-quality diffusion-bonding joints of dissimilar materials were achieved.

化 雨, 陈建国, 余黎明 .

高Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能

[J]. 金属学报, 2022, 58(2): 141

[本文引用: 1]

Peng Z F, Liu S, Yang C, et al.

The effect of phase parameter variation on hardness of P91 components after service exposures at 530-550℃

[J]. Acta Mater., 2017, 143: 141

DOI      URL     [本文引用: 1]

Deng H.

Microstructure, properties and safety evaluation of low hardness P91 steel tube after long service

[J]. Heat Treat. Met., 2021, 46(12): 209

DOI      [本文引用: 1]

Microstructure, properties and safety evaluation of low hardness P91 steel after 10<sup>5</sup> h service were studied by means of microstructure observation, energy dispersive spectrum(EDS) analysis, room temperature and high temperature mechanical property test, room temperature impact test and high temperature stress rupture test. The results show that the microstructure of low hardness P91 steel tube(157 HBW) after long service is composed of massive ferrite and large size M<sub>23</sub>C<sub>6</sub> phase. Compared with the normal hardness tube, its mechanical properties at room temperature and short time mechanical properties at high temperature decrease greatly, and its extrapolation value of 10<sup>5</sup> h endurance strength is 36% lower than that of the standard recommended value. The residual life of low hardness straight tube section of high-pressure steam pipe is 54 075 h, which means the operation of the power plant unit has great security risks.

邓 辉.

低硬度P91钢管长时服役后的组织性能和安全性评价

[J]. 金属热处理, 2021, 46(12): 209

[本文引用: 1]

Junek M, Svobodova M, Horvath J, et al.

The Effect of long-term ageing on microstructural properties and Laves phase precipitation of welded P91 and P92 steels

[J]. Steel Res. Inter., 2022, 93(2): 2100311

DOI      URL     [本文引用: 1]

/