Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (11): 846-854    DOI: 10.11901/1005.3093.2022.589
  研究论文 本期目录 | 过刊浏览 |
奥氏体耐热钢Sanicro25蠕变行为和断裂特征
吕德超, 曹铁山, 程从前, 周彤彤, 赵杰()
大连理工大学材料科学与工程学院 大连 116024
Creep Behavior and Fracture Characteristic of Austenitic Heat-Resistant Steel Sanicro25
LV Dechao, CAO Tieshan, CHENG Congqian, ZHOU Tongtong, ZHAO Jie()
School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
引用本文:

吕德超, 曹铁山, 程从前, 周彤彤, 赵杰. 奥氏体耐热钢Sanicro25蠕变行为和断裂特征[J]. 材料研究学报, 2023, 37(11): 846-854.
Dechao LV, Tieshan CAO, Congqian CHENG, Tongtong ZHOU, Jie ZHAO. Creep Behavior and Fracture Characteristic of Austenitic Heat-Resistant Steel Sanicro25[J]. Chinese Journal of Materials Research, 2023, 37(11): 846-854.

全文: PDF(8626 KB)   HTML
摘要: 

用OM、SEM和TEM等方法研究了超超临界电站用Sanicro25钢的蠕变机制。结果表明,这种钢的最小蠕变速率随着温度的升高和应力的增大而提高。根据最小蠕变速率特征得出表观应力指数为7.6~8.2,表观激活能为496.7~531.8 kJ/mol。在蠕变过程中在晶内弥散析出的纳米级Cu-rich相和MX相阻碍位错运动,导致蠕变门槛值应力的出现。用线性外延法求出的门槛值应力,随着温度的升高而减小。用门槛值将蠕变本构方程修正为$\dot{\varepsilon}_{\min }=A_{2}\left[\left(\sigma-\sigma_{\mathrm{th}}\right) / G\right]^{n} \exp (-Q / R T)$,可将不同温度下的最小蠕变速率归一化;同时确定真实应力指数(n=5)和真实表观激活能(Q=286.6 kJ/mol约等于γ-Fe自扩散激活能),从而判别出实验参数下材料的蠕变机制为点阵自扩散协助的位错攀移。

关键词 金属材料蠕变变形机制Sanicro25钢    
Abstract

The creep behavior at 130~240 MPa /973~1023 K of Sanicro25 steel for ultra-supercritical power plants were investigated by OM, SEM and TEM. The results showed that the minimum creep rate increases with the increasing temperature and applied stress. Based on the characteristics of the minimum creep rate, the stress exponents of 7.6~8.2 and the apparent activation energy of 496.7~531.8 kJ/mol can be acquired for the creep process. Nano-scale Cu-rich phase and MX phase precipitated in the matrix imped the dislocation motion, thus resulted in the emerging of creep threshold stress. The creep threshold stresses can be estimated by the linear extrapolation method, and which decrease with the increase in temperature. By invoking the concept of the threshold stresses to modify the constitutive equation, $\dot{\varepsilon}_{\min }=A_{2}\left[\left(\sigma-\sigma_{\mathrm{th}}\right) / G\right]^{n} \exp (-Q / R T)$, the normalization of the minimum creep rate can be acquired at various temperatures; Meanwhile, the true stress exponent (n=5) and the true apparent activation energy (Q=286.6kJ/mol approximately equal to the γ-Fe self-diffusion activation energy) can be identified. The creep rate-controlling mechanism was determined to be dislocation climbing mechanism assisted by lattice self-diffusion.

Key wordsmetallic materials    creep    deformation mechanism    Sanicro25 steel
收稿日期: 2022-11-08     
ZTFLH:  TG142.73  
基金资助:国家自然科学基金(U1610256);国家自然科学基金(51901035)
通讯作者: 赵杰,jiezhao@dlut.edu.cn,研究方向为金属材料蠕变、组织演化、损伤及寿命预测
Corresponding author: ZHAO Jie, Tel: (0411)84709076, E-mail: jiezhao@dlut.edu.cn
作者简介: 吕德超,男,1992年生,博士生
图1  Sanicro25钢的金相组织形貌
MaterialTemperature, T / K

Applied stress,

σ / MPa

Sanicro25 steel973180
220
240
998150
180
220
1023130
180
220
240
表1  Sanicro25钢的实验参数
图2  Sanicro 25钢的蠕变曲线
图3  Sanicro25钢蠕变最小速率与应力和温度的关系
图4  Sanicro25钢蠕变断裂寿命与加载应力的关系
图5  Sanicro25钢蠕变断裂寿命与最小蠕变速率的关系及其损伤特征
图6  Sanicro25钢的蠕变断裂塑性
图7  Sanicro25钢蠕变的截面和断口形貌
图8  Sanicro 25钢在1023K和220MPa蠕变后的TEM结构特征
图9  基于假定的蠕变机制计算的不同温度下Sanicro25钢的门槛应力
Assumed stress exponent, n

Temperature,

T/K

Threshold stress,

σth/MPa

Avg. correlation coeffcient

R2/pct

Avg. Activation energy,

Q/kJ·mol-1

3973138.5±1.90.986206.8±6.2
998122.4±1.3
102399.8±3.0
597382.9±3.90.995286.5±8.5
99869.7±1.4
102352.2±2.4
表2  Sanicro25钢的蠕变门槛值应力分析
图10  不同温度下基体内的位错-细小沉淀物相互作用的明视场TEM图像
图11  不同温度下Sanicro25钢的真实应力指数和激活能
图12  不同温度下Sanicro25钢归一化的最小蠕变速率
1 Saidur R, Abdelaziz E A, Demirbas A, et al. A review on biomass as a fuel for boilers [J]. Renew. Sust. Energ. Rev., 2011, 15(5): 2262
doi: 10.1016/j.rser.2011.02.015
2 Yu H Y, Chi C Y. Precipitation behavior of Cu-rich phase in 18Cr9-Ni3CuNbN austenitic heat-resistant steel at early aging stage [J]. Chin. J. Mater. Res., 2015, 29(3): 195
2 于鸿垚, 迟成宇. 18Cr9Ni3CuNbN奥氏体耐热钢中富Cu相的早期析出行为 [J]. 材料研究学报, 2015, 29(3): 195
doi: 10.11901/1005.3093.2014.610
3 Guo Y, Wang C X, Li T J, et al. Microstructure and precipitates of alloy 617B used for 700℃ advanced ulta-supercritical power units [J]. Chin. J. Mater. Res., 2016, 30(11): 841
doi: 10.11901/1005.3093.2015.478
3 郭 岩, 王彩侠, 李太江 等. 700℃超超临界机组用617B镍基合金的组织结构和析出相 [J]. 材料研究学报, 2016, 30(11): 841
4 Polák J, Petráš R, Heczko M, et al. Low cycle fatigue behavior of Sanicro25 steel at room and at elevated temperature [J]. Mater. Sci. Eng. A. 2014, 615: 175
doi: 10.1016/j.msea.2014.07.075
5 Rutkowski B, Gil A. A Czyrska-Filemonowicz Microstructure and chemical composition of the oxide scale formed on the sanicro 25 steel tubes after fireside corrosion [J]. Corros. Sci., 2016, 102: 373
doi: 10.1016/j.corsci.2015.10.030
6 Lim J, Hwang I S, Kim J H. Design of alumina forming FeCrAl steels for lead or lead-bismuth cooled fast reactors [J]. J. Nucl. Mater., 2013, 441(1): 650
doi: 10.1016/j.jnucmat.2012.04.006
7 Korzhavyi P A, Sandström R. First-principles evaluation of the effect of alloying elements on the lattice parameter of a 23Cr25NiWCuCo austenitic stainless steel to model solid solution hardening contribution to the creep strength [J]. Mater. Sci. Eng. A. 2015, 626: 213
doi: 10.1016/j.msea.2014.12.057
8 Chai G, Forsberg U. 12 - Sanicro 25: An Advanced High-strength, Heat-resistant Austenitic Stainless Steel [M]. Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants, Woodhead Publishing, 2017: 391-421
9 Li Y, Wang X. Strengthening mechanisms and creep rupture behavior of advanced austenitic heat resistant steel SA-213 S31035 for A-USC power plants [J]. Mater. Sci. Eng. A. 2020, 775:138991
doi: 10.1016/j.msea.2020.138991
10 Zhang Y, Jing H, Xu L, et al. High-temperature deformation and fracture mechanisms of an advanced heat resistant Fe-Cr-Ni alloy [J]. Mater. Sci. Eng. A. 2017, 686: 102
doi: 10.1016/j.msea.2017.01.002
11 Zhang Y, Jing H, Xu L, et al. Microstructure and texture study on an advanced heat-resistant alloy during creep [J]. Mater. Charact., 2017, 130: 156
doi: 10.1016/j.matchar.2017.05.037
12 Song K, Zhao L, Xu L, et al. Dislocation creep modelling of Sanicro 25 based on microstructural evolution and particle hardening mechanism [J]. Theor. Appl. Fract. Mec., 2021, 112: 102893
doi: 10.1016/j.tafmec.2021.102893
13 Kloc L, Dymáček P, Sklenička V. High temperature creep of Sanicro 25 austenitic steel at low stresses [J]. Mater. Sci. Eng. A. 2018, 722: 88
doi: 10.1016/j.msea.2018.02.095
14 Zhao L, Song K, Zhang Y, et al. Creep rupture assessment of new heat-resistant Sanicro 25 steel using different life prediction approaches [J]. J. Mater. Eng. Perform., 2019, 28(12): 7464
doi: 10.1007/s11665-019-04478-1
15 Wang D Y, Wang L Y, Feng X, et al. Creep properties of pre-deformed F316 stainless steel [J]. Chin. J. Mater. Res., 2019, 33(7): 497
doi: 10.11901/1005.3093.2018.677
15 王冬颖, 王立毅, 冯 鑫 等. 一级应变硬化F316奥氏体不锈钢的高温蠕变性能 [J]. 材料研究学报, 2019, 33(7): 497
doi: 10.11901/1005.3093.2018.677
16 Li H F, Zhao J, Cheng C Q, et al. Prediction of high temperature creep deformation and rupture life on HP heat reisistanct alloy using Zc parameter [J]. J. Mater. Eng., 2018, 46(3): 112
16 李会芳, 赵 杰, 程从前 等. 基于Zc参数的HP耐热合金高温蠕变及持久寿命的预测方法 [J]. 材料工程, 2018, 46(3): 112
doi: 10.11868/j.issn.1001-4381.2016.000354
17 He J, Sandström R, Vujic S. Creep, low cycle fatigue and creep-fatigue properties of a modified HR3C [J]. Proce. Struct. Integrity. 2016, 2: 871
18 Kassner M E. Chapter 1-Fundamentals of Creep in Materials [M]. Fundamentals of Creep in Metals and Alloys (Third Edition), Butterworth-Heinemann, Boston, 2015: 1-6
19 Alomari A S, Kumar N, Murty K L. Creep behavior and microstructural evolution of a Fe-20Cr-25Ni (mass percent) austenitic stainless steel (Alloy 709) at elevated temperatures [J]. Metall. Mater. Trans. A. 2019, 50(2): 641
20 Park D B, Hong S M, Lee K H, et al. High-temperature creep behavior and microstructural evolution of an 18Cr9Ni3CuNbVN austenitic stainless steel [J]. Mater. Charact., 2014, 93: 52
doi: 10.1016/j.matchar.2014.03.012
21 Ou P, Li L, Xie X F, et al. Steady-State Creep Behavior of Super304H Austenitic Steel at Elevated Temperatures [J]. Acta. Metall. Sin-Engl. 2015, 28(11): 1336
doi: 10.1007/s40195-015-0331-8
22 Meng L J, Sun J, Xing H. Creep and precipitation behaviors of AL6XN austenitic steel at elevated temperatures [J]. J. Nucl. Mater., 2012, 427(1): 116
doi: 10.1016/j.jnucmat.2012.04.016
23 Guo Q Y, Li Y M, Chen B, et al. Effect of High-Temperature Ageing on Microstructure and Creep Properties of S31042 Heat-Resistant Steel [J]. Acta Metall. Sin., 2021, 57(01): 82
23 郭倩颖, 李彦默, 陈 斌 等. 高温时效处理对S31042耐热钢组织和蠕变性能的影响 [J]. 金属学报, 2021, 57(01): 82
24 Latha S, Mathew M D, Parameswaran P, et al. Creep behaviour of 14Cr-15Ni-Ti stainless steel at 923K [J]. Mater. Sci. Eng. A, 2010, 527(20): 5167
doi: 10.1016/j.msea.2010.04.043
25 Wang C Y, Cepeda-Jiménez C M, Pérez-Prado M T. Dislocation-particle interactions in magnesium alloys [J]. Acta Mater., 2020, 194: 190
doi: 10.1016/j.actamat.2020.04.055
26 Arzt E, Ashby M F. Threshold stresses in materials containing dispersed particles [J]. Scrip. Mater., 1982, 16(11): 1285
27 Ding Z, Zhang J, Wang C S, et al. Dislocation configuration in DZ125 Ni-based superalloy after high temperature stress rupture [J]. Acta Metall. Sin., 2011, 47(01): 47
27 丁 智, 张 军, 王常帅 等. DZ125镍基高温合金高温持久断裂后的位错组态 [J]. 金属学报. 2011, 47(01): 47
28 Zhang J S. High Temperature Deformation and Fracture of Materials [M]. Woodhead Publishing, 2010: 52-53
29 Murty K L, Mohamed F A, Dorn J E. Viscous glide, dislocation climb and newtonian viscous deformation mechanisms of high temperature creep in Al-3Mg [J]. Acta. Mater., 1972, 20(8): 1009
doi: 10.1016/0001-6160(72)90135-6
30 Murty K L, Dentel G, Britt J. Effect of temperature on transitions in creep mechanisms in class-A alloys [J]. Mater. Sci. Eng. A, 2005, 410-411: 28
doi: 10.1016/j.msea.2005.08.006
31 Yuan C, Guo J T, Yang H C. Resistant stress for creep in cast nickel-base superalloys [J]. Acta Metall. Sin., 2002, 11: 1149
31 袁 超, 郭建亭, 杨洪才. 铸造镍基高温合金的蠕变阻力 [J]. 金属学报, 2002, 11: 1149
32 Alomari A S, Kumar N, Murty K L. Serrated yielding in an advanced stainless steel Fe-25Ni-20Cr (wt%) [J]. Mater. Sci. Eng. A, 2019, 751: 292
doi: 10.1016/j.msea.2019.02.023
33 Maruyama K, 8-Fundamental Aspects of Creep Deformation and Deformation Mechanism Map [M]. Creep-Resistant Steels, Woodhead Publishing 2008: 265-278
34 Ovid'ko I A. 14-Enhanced Ductility and Its Mechanisms in Nanocrystalline Metallic Materials [M]. Nanostructured Metals and Alloys, Woodhead Publishing 2011: 430-458
35 Li Y, Mohamed F A. An investigation of creep behavior in an SiC 2124 Al composite [J]. Acta Mater., 1997, 45(11): 4775
doi: 10.1016/S1359-6454(97)00130-4
36 Vo N Q, Bayansan D, Sanaty-Zadeh A, et al. Effect of Yb microadditions on creep resistance of a dilute Al-Er-Sc-Zr alloy [J]. Materialia, 2018, 4: 65
doi: 10.1016/j.mtla.2018.08.030
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.