|
|
奥氏体耐热钢Sanicro25蠕变行为和断裂特征 |
吕德超, 曹铁山, 程从前, 周彤彤, 赵杰( ) |
大连理工大学材料科学与工程学院 大连 116024 |
|
Creep Behavior and Fracture Characteristic of Austenitic Heat-Resistant Steel Sanicro25 |
LV Dechao, CAO Tieshan, CHENG Congqian, ZHOU Tongtong, ZHAO Jie( ) |
School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China |
引用本文:
吕德超, 曹铁山, 程从前, 周彤彤, 赵杰. 奥氏体耐热钢Sanicro25蠕变行为和断裂特征[J]. 材料研究学报, 2023, 37(11): 846-854.
Dechao LV,
Tieshan CAO,
Congqian CHENG,
Tongtong ZHOU,
Jie ZHAO.
Creep Behavior and Fracture Characteristic of Austenitic Heat-Resistant Steel Sanicro25[J]. Chinese Journal of Materials Research, 2023, 37(11): 846-854.
1 |
Saidur R, Abdelaziz E A, Demirbas A, et al. A review on biomass as a fuel for boilers [J]. Renew. Sust. Energ. Rev., 2011, 15(5): 2262
doi: 10.1016/j.rser.2011.02.015
|
2 |
Yu H Y, Chi C Y. Precipitation behavior of Cu-rich phase in 18Cr9-Ni3CuNbN austenitic heat-resistant steel at early aging stage [J]. Chin. J. Mater. Res., 2015, 29(3): 195
|
2 |
于鸿垚, 迟成宇. 18Cr9Ni3CuNbN奥氏体耐热钢中富Cu相的早期析出行为 [J]. 材料研究学报, 2015, 29(3): 195
doi: 10.11901/1005.3093.2014.610
|
3 |
Guo Y, Wang C X, Li T J, et al. Microstructure and precipitates of alloy 617B used for 700℃ advanced ulta-supercritical power units [J]. Chin. J. Mater. Res., 2016, 30(11): 841
doi: 10.11901/1005.3093.2015.478
|
3 |
郭 岩, 王彩侠, 李太江 等. 700℃超超临界机组用617B镍基合金的组织结构和析出相 [J]. 材料研究学报, 2016, 30(11): 841
|
4 |
Polák J, Petráš R, Heczko M, et al. Low cycle fatigue behavior of Sanicro25 steel at room and at elevated temperature [J]. Mater. Sci. Eng. A. 2014, 615: 175
doi: 10.1016/j.msea.2014.07.075
|
5 |
Rutkowski B, Gil A. A Czyrska-Filemonowicz Microstructure and chemical composition of the oxide scale formed on the sanicro 25 steel tubes after fireside corrosion [J]. Corros. Sci., 2016, 102: 373
doi: 10.1016/j.corsci.2015.10.030
|
6 |
Lim J, Hwang I S, Kim J H. Design of alumina forming FeCrAl steels for lead or lead-bismuth cooled fast reactors [J]. J. Nucl. Mater., 2013, 441(1): 650
doi: 10.1016/j.jnucmat.2012.04.006
|
7 |
Korzhavyi P A, Sandström R. First-principles evaluation of the effect of alloying elements on the lattice parameter of a 23Cr25NiWCuCo austenitic stainless steel to model solid solution hardening contribution to the creep strength [J]. Mater. Sci. Eng. A. 2015, 626: 213
doi: 10.1016/j.msea.2014.12.057
|
8 |
Chai G, Forsberg U. 12 - Sanicro 25: An Advanced High-strength, Heat-resistant Austenitic Stainless Steel [M]. Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants, Woodhead Publishing, 2017: 391-421
|
9 |
Li Y, Wang X. Strengthening mechanisms and creep rupture behavior of advanced austenitic heat resistant steel SA-213 S31035 for A-USC power plants [J]. Mater. Sci. Eng. A. 2020, 775:138991
doi: 10.1016/j.msea.2020.138991
|
10 |
Zhang Y, Jing H, Xu L, et al. High-temperature deformation and fracture mechanisms of an advanced heat resistant Fe-Cr-Ni alloy [J]. Mater. Sci. Eng. A. 2017, 686: 102
doi: 10.1016/j.msea.2017.01.002
|
11 |
Zhang Y, Jing H, Xu L, et al. Microstructure and texture study on an advanced heat-resistant alloy during creep [J]. Mater. Charact., 2017, 130: 156
doi: 10.1016/j.matchar.2017.05.037
|
12 |
Song K, Zhao L, Xu L, et al. Dislocation creep modelling of Sanicro 25 based on microstructural evolution and particle hardening mechanism [J]. Theor. Appl. Fract. Mec., 2021, 112: 102893
doi: 10.1016/j.tafmec.2021.102893
|
13 |
Kloc L, Dymáček P, Sklenička V. High temperature creep of Sanicro 25 austenitic steel at low stresses [J]. Mater. Sci. Eng. A. 2018, 722: 88
doi: 10.1016/j.msea.2018.02.095
|
14 |
Zhao L, Song K, Zhang Y, et al. Creep rupture assessment of new heat-resistant Sanicro 25 steel using different life prediction approaches [J]. J. Mater. Eng. Perform., 2019, 28(12): 7464
doi: 10.1007/s11665-019-04478-1
|
15 |
Wang D Y, Wang L Y, Feng X, et al. Creep properties of pre-deformed F316 stainless steel [J]. Chin. J. Mater. Res., 2019, 33(7): 497
doi: 10.11901/1005.3093.2018.677
|
15 |
王冬颖, 王立毅, 冯 鑫 等. 一级应变硬化F316奥氏体不锈钢的高温蠕变性能 [J]. 材料研究学报, 2019, 33(7): 497
doi: 10.11901/1005.3093.2018.677
|
16 |
Li H F, Zhao J, Cheng C Q, et al. Prediction of high temperature creep deformation and rupture life on HP heat reisistanct alloy using Zc parameter [J]. J. Mater. Eng., 2018, 46(3): 112
|
16 |
李会芳, 赵 杰, 程从前 等. 基于Zc参数的HP耐热合金高温蠕变及持久寿命的预测方法 [J]. 材料工程, 2018, 46(3): 112
doi: 10.11868/j.issn.1001-4381.2016.000354
|
17 |
He J, Sandström R, Vujic S. Creep, low cycle fatigue and creep-fatigue properties of a modified HR3C [J]. Proce. Struct. Integrity. 2016, 2: 871
|
18 |
Kassner M E. Chapter 1-Fundamentals of Creep in Materials [M]. Fundamentals of Creep in Metals and Alloys (Third Edition), Butterworth-Heinemann, Boston, 2015: 1-6
|
19 |
Alomari A S, Kumar N, Murty K L. Creep behavior and microstructural evolution of a Fe-20Cr-25Ni (mass percent) austenitic stainless steel (Alloy 709) at elevated temperatures [J]. Metall. Mater. Trans. A. 2019, 50(2): 641
|
20 |
Park D B, Hong S M, Lee K H, et al. High-temperature creep behavior and microstructural evolution of an 18Cr9Ni3CuNbVN austenitic stainless steel [J]. Mater. Charact., 2014, 93: 52
doi: 10.1016/j.matchar.2014.03.012
|
21 |
Ou P, Li L, Xie X F, et al. Steady-State Creep Behavior of Super304H Austenitic Steel at Elevated Temperatures [J]. Acta. Metall. Sin-Engl. 2015, 28(11): 1336
doi: 10.1007/s40195-015-0331-8
|
22 |
Meng L J, Sun J, Xing H. Creep and precipitation behaviors of AL6XN austenitic steel at elevated temperatures [J]. J. Nucl. Mater., 2012, 427(1): 116
doi: 10.1016/j.jnucmat.2012.04.016
|
23 |
Guo Q Y, Li Y M, Chen B, et al. Effect of High-Temperature Ageing on Microstructure and Creep Properties of S31042 Heat-Resistant Steel [J]. Acta Metall. Sin., 2021, 57(01): 82
|
23 |
郭倩颖, 李彦默, 陈 斌 等. 高温时效处理对S31042耐热钢组织和蠕变性能的影响 [J]. 金属学报, 2021, 57(01): 82
|
24 |
Latha S, Mathew M D, Parameswaran P, et al. Creep behaviour of 14Cr-15Ni-Ti stainless steel at 923K [J]. Mater. Sci. Eng. A, 2010, 527(20): 5167
doi: 10.1016/j.msea.2010.04.043
|
25 |
Wang C Y, Cepeda-Jiménez C M, Pérez-Prado M T. Dislocation-particle interactions in magnesium alloys [J]. Acta Mater., 2020, 194: 190
doi: 10.1016/j.actamat.2020.04.055
|
26 |
Arzt E, Ashby M F. Threshold stresses in materials containing dispersed particles [J]. Scrip. Mater., 1982, 16(11): 1285
|
27 |
Ding Z, Zhang J, Wang C S, et al. Dislocation configuration in DZ125 Ni-based superalloy after high temperature stress rupture [J]. Acta Metall. Sin., 2011, 47(01): 47
|
27 |
丁 智, 张 军, 王常帅 等. DZ125镍基高温合金高温持久断裂后的位错组态 [J]. 金属学报. 2011, 47(01): 47
|
28 |
Zhang J S. High Temperature Deformation and Fracture of Materials [M]. Woodhead Publishing, 2010: 52-53
|
29 |
Murty K L, Mohamed F A, Dorn J E. Viscous glide, dislocation climb and newtonian viscous deformation mechanisms of high temperature creep in Al-3Mg [J]. Acta. Mater., 1972, 20(8): 1009
doi: 10.1016/0001-6160(72)90135-6
|
30 |
Murty K L, Dentel G, Britt J. Effect of temperature on transitions in creep mechanisms in class-A alloys [J]. Mater. Sci. Eng. A, 2005, 410-411: 28
doi: 10.1016/j.msea.2005.08.006
|
31 |
Yuan C, Guo J T, Yang H C. Resistant stress for creep in cast nickel-base superalloys [J]. Acta Metall. Sin., 2002, 11: 1149
|
31 |
袁 超, 郭建亭, 杨洪才. 铸造镍基高温合金的蠕变阻力 [J]. 金属学报, 2002, 11: 1149
|
32 |
Alomari A S, Kumar N, Murty K L. Serrated yielding in an advanced stainless steel Fe-25Ni-20Cr (wt%) [J]. Mater. Sci. Eng. A, 2019, 751: 292
doi: 10.1016/j.msea.2019.02.023
|
33 |
Maruyama K, 8-Fundamental Aspects of Creep Deformation and Deformation Mechanism Map [M]. Creep-Resistant Steels, Woodhead Publishing 2008: 265-278
|
34 |
Ovid'ko I A. 14-Enhanced Ductility and Its Mechanisms in Nanocrystalline Metallic Materials [M]. Nanostructured Metals and Alloys, Woodhead Publishing 2011: 430-458
|
35 |
Li Y, Mohamed F A. An investigation of creep behavior in an SiC 2124 Al composite [J]. Acta Mater., 1997, 45(11): 4775
doi: 10.1016/S1359-6454(97)00130-4
|
36 |
Vo N Q, Bayansan D, Sanaty-Zadeh A, et al. Effect of Yb microadditions on creep resistance of a dilute Al-Er-Sc-Zr alloy [J]. Materialia, 2018, 4: 65
doi: 10.1016/j.mtla.2018.08.030
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|