Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (11): 809-817    DOI: 10.11901/1005.3093.2022.568
  研究论文 本期目录 | 过刊浏览 |
焊后热处理对7055-0.1Sc铝合金搅拌摩擦焊接头的组织与力学性能的影响
马俊雅1,2, 张振2(), 李静静1, 王贝贝2, 王英君3, 薛鹏2, 刘峰超2, 倪丁瑞2, 肖伯律2, 马宗义2
1.沈阳理工大学材料科学与工程学院 沈阳 110159
2.中国科学院金属研究所 沈阳 110016
3.东北轻合金有限责任公司 哈尔滨 150060
Effect of Post-Weld Heat Treatment on Microstructures and Mechanical Properties of Friction Stir Welded 7055-0.1Sc Aluminum Alloy
MA Junya1,2, ZHANG Zhen2(), LI Jingjing1, WANG Beibei2, WANG Yingjun3, XUE Peng2, LIU Fengchao2, NI Dingrui2, XIAO Bolv2, MA Zongyi2
1.School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China
2.Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Northeast Light Alloy Co., LTD., Harbin 150060, China
引用本文:

马俊雅, 张振, 李静静, 王贝贝, 王英君, 薛鹏, 刘峰超, 倪丁瑞, 肖伯律, 马宗义. 焊后热处理对7055-0.1Sc铝合金搅拌摩擦焊接头的组织与力学性能的影响[J]. 材料研究学报, 2023, 37(11): 809-817.
Junya MA, Zhen ZHANG, Jingjing LI, Beibei WANG, Yingjun WANG, Peng XUE, Fengchao LIU, Dingrui NI, Bolv XIAO, Zongyi MA. Effect of Post-Weld Heat Treatment on Microstructures and Mechanical Properties of Friction Stir Welded 7055-0.1Sc Aluminum Alloy[J]. Chinese Journal of Materials Research, 2023, 37(11): 809-817.

全文: PDF(14376 KB)   HTML
摘要: 

对11 mm厚的7055-0.1Sc-T4铝合金板材进行搅拌摩擦焊接,研究了焊后热处理对接头的组织和力学性能的影响。结果表明,热处理前接头的硬度分布呈“W”形,接头前进侧和后退侧都有一个最低硬度区,强度系数为63.0%~73.8%,拉伸断口位于后退侧最低硬度区。焊后人工时效(120℃×24 h)热处理使焊核的硬度提高,但是不改变接头最低硬度区的硬度,对拉伸性能和断裂行为的影响甚微。焊后的固溶(470℃×1.5 h+水淬)+人工时效(120℃×24 h)(T6)热处理不改变低焊速接头的晶粒组织,但是使高焊速接头焊核区底部的晶粒异常长大;T6热处理使接头各区域原有的沉淀相溶解,重新生成细小均匀的η'η(MgZn2)沉淀相,使其硬度显著提高;T6热处理使接头沿“S”线附近出现微小的孔洞、在拉伸过程中沿“S”线开裂、其抗拉强度比焊接态大幅度提高,达到母材强度的87%,但是其塑性严重降低。

关键词 金属材料搅拌摩擦焊接焊后热处理微观组织力学性能    
Abstract

7055-0.1Sc-T4 aluminum Al-alloy plates of 11 mm in thickness were firstly subjected to friction stir welding (FSW) and then the effect of post-weld heat treatment on the microstructure and mechanical properties of the FSW joints was investigated. The results show that for the as welded FSW joints, the hardness profiles distribution exhibited “W” shaped pattern with the low hardness zone (LHZ) on both the retreating (RS) and the advancing sides (AS), respectively. And the joints fractured at the LHZ on RS with the strength coefficient are 63.0%-73.8%. After the post-weld artificial aging at 120℃ for 12 h (AA), the hardness of the nugget zone (NZ) increased but the hardness of the LHZ, tensile properties and fracture location were unchanged. Solution treatment at 535℃ for 1.5 h+water quenching+artificial aging at 120℃ for 12 h (T6) did not change the grain structure of the joint under low welding speed of mm/min, but caused the abnormal grain growth at the bottom of the NZ under high welding speed of 250 mm/min. Moreover, T6 heat treatment resulted in the dissolution of the original precipitates and the re-precipitation of fine and uniform η′ and η (MgZn2) phases, and therefore significantly improved the hardness of the joints. The T6 joint cracked along the “S” line during tension with a seriously reduced plasticity and joint efficiency of 87%.

Key wordsmetallic materials    friction stir welding    post-weld heat treatment    microstructure    mechanical properties
收稿日期: 2022-10-25     
ZTFLH:  TG457.14  
基金资助:国家自然科学基金(52275392);辽宁省优秀青年基金(2021-YQ-01);辽宁自然科学基金(2021-MS-011)
通讯作者: 张振,副研究员,zhangzhen@imr.ac.cn,研究方向为高强铝合金搅拌摩擦焊接
Corresponding author: ZHANG Zhen, Tel: (024)23971752, E-mail: zhangzhen@imr.ac.cn
作者简介: 马俊雅,女,1995年生,硕士生
ZnMgCuScZrSiFeMnAl
7.6~8.41.8~2.32.0~2.60.10.08~0.25≤0.1≤0.15≤0.05Bal.
表1  7055-0.1Sc-T4轧制板材的化学成分
Yield Strength / MPaTensile Strength / MPa

Elongation /

%

595±28635±369±5
表2  7055-0.1Sc-T4轧制板材的拉伸性能
图1  拉伸试样的尺寸
图2  FSW 7055-0.1Sc-T4焊接态和T6态接头横截面的宏观形貌
图3  图2c, d中黑色箭头所示位置的放大图
图4  FSW 7055-0.1Sc-T4焊接态和T6态接头不同位置的微观组织
图5  FSW 7055-0.1Sc-T4焊接态和T6态接头的“S”线分布
图6  FSW 7055-0.1Sc-T4接头横截面中心线的显微硬度分布
图7  FSW 7055-0.1Sc-T4焊接态和T6接头沉淀相的分布
NumberSampleTensile Strength / MPaElongation / %Strength coefficient / %
1500-100-AW399.9±1.48.9±0.563.0%
2500-250-AW468.5±7.86.3±0.573.8%
3500-100-AA415.8±2.14.3±0.465.5%
4500-250-AA477.6±3.53.8±0.475.2%
5500-100-T6556.5±1.5Brittle fracture87.6%
6500-250-T6555.0±2.0Brittle fracture87.4%
表3  FSW 7055-0.1Sc-T4的接头热处理前后的拉伸性能
图8  FSW 7055-0.1Sc-T4焊接态和T6接头的断裂位置
图9  FSW 7055-0.1Sc-T4焊接态和T6接头断口的形貌
1 Schuster P A, österreicher J A, Kirov G, et al. Characterization and comparison of process chains for producing automotive structural parts from 7xxx aluminum sheets [J]. Metals, 2019, 9(3): 305
doi: 10.3390/met9030305
2 Peng X Y, Guo Q, Liang X P, et al. Mechanical properties, corrosion behavior and microstructures of a non-isothermal ageing treated Al-Zn-Mg-Cu alloy [J]. Mater. Sci. Eng. A, 2017, 688: 146
doi: 10.1016/j.msea.2017.01.086
3 Yu L B, Wang W Y, Wang J, et al. The effects of Sc addition on the microstructure and mechanical properties of Be-Al alloy fabricated by induction melting [J]. J. Mater. Eng. Perform., 2019, 28(4): 2378
doi: 10.1007/s11665-019-04004-3
4 Zhang J Y, Gao Y H, Yang C, et al. Microalloying Al alloys with Sc: a review [J]. Rare Met., 2020, 39(6): 636
doi: 10.1007/s12598-020-01433-1
5 Teng G B, Liu C Y, Li J, et al. Effect of Sc on microstructure and mechanical property of 7055 Al-alloy [J]. Chin. J. Mater. Res., 2018, 32(2): 112
doi: 10.11901/1005.3093.2017.233
5 滕广标, 刘崇宇, 李 剑 等. 添加Sc对7055铝合金微观结构和力学性能的影响 [J]. 材料研究学报, 2018, 32(2): 112
doi: 10.11901/1005.3093.2017.233
6 Mo Y F, Liu C Y, Teng G B, et al. Fabrication of 7075-0.25Sc-0.15Zr alloy with excellent damping and mechanical properties by FSP and T6 treatment [J]. J. Mater. Eng. Perform., 2018, 27(8):4162
doi: 10.1007/s11665-018-3451-2
7 Verma R P, Kumar Lila M. A short review on aluminum alloys and welding in structural applications [J]. Mate. Today: Proc., 2021, 46: 10687
8 Mishra R S, Ma Z Y. Friction stir welding and processing [J]. Mater. Sci. Eng. R, 2005, 50(1-2): 1
doi: 10.1016/j.mser.2005.07.001
9 Gupta S, Haridas R S, Agrawal P, et al. Influence of welding parameters on mechanical, microstructure, and corrosion behavior of friction stir welded Al 7017 alloy [J]. Mater. Sci. Eng. A, 2022, 846: 143303
doi: 10.1016/j.msea.2022.143303
10 Zhang H, Qin H L, Wu H Q. Effect of process parameters on mechanical properties of friction stir welded 2195 Al-Li alloy joints [J]. Trans. China Weld. Inst., 2016, 37(4): 19
10 张 华, 秦海龙, 吴会强. 工艺参数对2195铝锂合金搅拌摩擦焊接头力学性能的影响 [J]. 焊接学报, 2016, 37(4): 19
11 Liu J, Chen H G, Wei J X, et al. Micro-softening behavior and its control of 7N01-T5 Al alloy friction stir welded joint [J]. Light Alloy Fabrication Technol., 2021, 49(11): 58
11 刘 建, 陈辉刚, 韦景勋 等. 7N01-T5铝合金搅拌摩擦焊接头微区软化行为及控制 [J]. 轻合金加工技术, 2021, 49(11): 58
12 Zhang Z, Xiao B L, Ma Z Y. Enhancing mechanical properties of friction stir welded 2219Al-T6 joints at high welding speed through water cooling and post-welding artificial ageing [J]. Mater. Charact., 2015, (106): 255
13 Zhang Z, Xiao B L, Ma Z Y. Influence of post weld heat treatment on microstructure and mechanical properties of friction stir-welded 2014Al-T6 alloy. AMR, 2012, (409): 299
14 Kosturek R, Śnieżek L, Wachowski M, et al. The influence of post-weld heat treatment on the microstructure and fatigue properties of Sc-modified AA2519 friction stir-welded joint [J]. Materials, 2019, 12(4): 583
doi: 10.3390/ma12040583
15 Hassan K A A, Norman A F, Price D A, et al. Stability of nugget zone grain structures in high strength Al-alloy friction stir welds during solution treatment [J]. Acta Mater., 2003, 51(7): 1923
doi: 10.1016/S1359-6454(02)00598-0
16 Zhang J H, Hu Z L. Microstructural thermal stability of aluminum alloy friction stir welding joint [J]. Chin. J. Mech., 2022, 58(5): 73
16 张嘉恒, 胡志力. 铝合金搅拌摩擦焊接头组织热稳定性 [J]. 机械工程学报, 2022, 58(5): 73
17 Zuiko I S, Mironov S, Betsofen S, et al. Suppression of abnormal grain growth in friction-stir welded Al-Cu-Mg alloy by lowering of welding temperature [J]. Scr. Mater., 2021, 196: 113765
doi: 10.1016/j.scriptamat.2021.113765
18 Hu Z L, Dai M L, Pang Q. Influence of welding combined plastic forming on microstructure stability and mechanical properties of friction stir-welded Al-Cu alloy [J]. J. Mater. Eng. Perform., 2018, 27(8): 4036
doi: 10.1007/s11665-018-3495-3
19 Li N J. Characterizations on microstructures and properties of 7075 aluminum alloy after friction stir processing and subsequent heat treatment [D]. Chongqing: Chongqing University, 2017
19 李念军. 7075铝合金搅拌摩擦加工及热处理后的组织性能表征研究 [D]. 重庆: 重庆大学, 2017
20 Zhang Z, Xiao B L, Ma Z Y. Effect of segregation of secondary phase particles and "S" line on tensile fracture behavior of friction stir-welded 2024Al-T351 joints [J]. Metall. Mater. Trans. A, 2013, 44(9): 4081
doi: 10.1007/s11661-013-1778-8
21 Zeng X H, Xue P, Wang D, et al. Effect of processing parameters on plastic flow and defect formation in friction-stir-welded aluminum alloy [J]. Metall. Mater. Trans. A, 2018, 49(7): 2673
doi: 10.1007/s11661-018-4615-2
22 Ren S R, Ma Z Y, Chen L Q. Effect of initial butt surface on tensile properties and fracture behavior of friction stir welded Al-Zn-Mg-Cu alloy [J]. Mater. Sci. Eng. A, 2008, 479(1): 293
doi: 10.1016/j.msea.2007.06.047
23 Hu Z L, Pang Q, Dai M L. Microstructure and mechanical properties of friction stir welding joint during post weld heat treatment with different zigzag lines [J]. Rare Met., 2018, 38(11): 1070
doi: 10.1007/s12598-018-1179-7
24 Lin H Q, Wu Y L, Liu S D. Impact of initial temper of base metal on microstructure and mechanical properties of friction stir welded AA 7055 alloy [J]. Mater. Charact., 2018, 146: 159
doi: 10.1016/j.matchar.2018.09.043
25 Kang J, Feng Z C, Frankel G S, et al. Friction stir welding of Al alloy 2219-T8: part I-evolution of precipitates and formation of abnormal Al2Cu agglomerates [J]. Metall. Mater. Trans. A, 2016, 47(9): 4553
doi: 10.1007/s11661-016-3648-7
26 Liu F C, Ma Z Y. Influence of tool dimension and welding parameters on microstructure and mechanical properties of friction-stir-welded 6061-T651 aluminum alloy [J]. Metall. Mater. Trans. A, 2008, 39(10): 2378
doi: 10.1007/s11661-008-9586-2
27 Chen Z W, Yan K, Ren C C, et al. Precipitation sequence and hardening effect in 7A85 aluminum alloy [J]. J. Alloys Compd., 2021, 875: 159950
doi: 10.1016/j.jallcom.2021.159950
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.