Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (11): 801-808    DOI: 10.11901/1005.3093.2022.602
  研究论文 本期目录 | 过刊浏览 |
纳米多孔Fe-Si-B-P的脱合金制备及其电化学性能
赖祥晔, 翁楠, 池昱晨, 秦凤香()
南京理工大学材料科学与工程学院 南京 210094
Formation and Electrochemical Properties of Nanoporous Fe-Si-B-P by Dealloying
LAI Xiangye, WENG Nan, CHI Yuchen, QIN Fengxiang()
School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
引用本文:

赖祥晔, 翁楠, 池昱晨, 秦凤香. 纳米多孔Fe-Si-B-P的脱合金制备及其电化学性能[J]. 材料研究学报, 2023, 37(11): 801-808.
Xiangye LAI, Nan WENG, Yuchen CHI, Fengxiang QIN. Formation and Electrochemical Properties of Nanoporous Fe-Si-B-P by Dealloying[J]. Chinese Journal of Materials Research, 2023, 37(11): 801-808.

全文: PDF(13582 KB)   HTML
摘要: 

在0.05 mol/L H2SO4溶液中对773~833 K热处理后的Fe76Si9B10P5非晶合金进行脱合金处理,采用脱合金法制备出Fe-Si-B-P纳米多孔材料。利用X射线衍射仪、扫描电子显微镜、透射电子显微镜等手段以及电化学工作站表征其表面形貌、微观结构和组成,研究其电化学性能。结果表明,热处理后的Fe76Si9B10P5非晶合金晶化为α-Fe、Fe2B和Fe3P相,在脱合金过程中α-Fe晶粒优先溶解形成纳米多孔结构,随着热处理温度从773 K提高到833 K材料中纳米多孔的孔径从150 nm增大到260 nm。同时,较大的比表面积提供更多的催化活性位点使纳米多孔Fe-Si-B-P具有比Fe76Si9B10P5非晶合金更优异的氧化还原性能。

关键词 金属材料非晶晶化脱合金纳米多孔结构氧化还原反应    
Abstract

Fe76Si9B10P5 amorphous alloys annealed at 773~833 K with heterogeneous microstructure consisting of α-Fe, Fe2B and Fe3P phases, were de-alloyed in 0.05 mol/L H2SO4 solution. The porous structure was formed due to the preferential dissolution of α-Fe phase in the form of micro-coupling cells between α-Fe phase and cathodic residual phases. The size of nanopores increased from 150 nm to 260 nm with the temperature increasing from 773 K to 883 K. The nanoporous Fe-Si-B-P electrode showed much superior redox performance compared with Fe76Si9B10P5 amorphous alloy, which was ascribed to its large specific area and more electrochemical active sites.

Key wordsmetallic materials    crystallization of amorphous alloys    dealloying    nanoporous structure    redox reaction
收稿日期: 2022-11-14     
ZTFLH:  TG403.40  
基金资助:国家自然科学基金(52371157);国家自然科学基金(51671106)
通讯作者: 秦凤香,教授,fengxiangqin@njust.edu.cn,研究方向为金属纳米结构功能材料及非晶合金的设计与应用
Corresponding author: QIN Fengxiang, Tel: (025)84315606, E-mail: fengxiangqin@njust.edu.cn
作者简介: 赖祥晔,女,2001年生,硕士生
图1  Fe76Si9B10P5非晶合金的DSC曲线
图2  Fe76Si9B10P5非晶合金及其在不同温度热处理后的XRD谱
图3  Fe76Si9B10P5非晶合金及其在773 K热处理后的明场图像和相应的选区衍射图
图4  在不同温度热处理的Fe76Si9B10P5合金在0.05 mol/L H2SO4溶液中脱合金处理后的XRD谱
图5  纯Fe、Fe85B15合金、Fe3P合金、Fe76Si9B10P5非晶合金和热处理Fe76Si9B10P5合金在0.05 mol/L H2SO4溶液中的开路电位与浸泡时间的关系
图6  Fe76Si9B10P5合金在773、793、813和833 K温度热处理后在0.05 mol/L H2SO4溶液中脱合金处理样品的SEM照片,内嵌图片为横截面SEM照片
图7  Fe76Si9B10P5合金在不同温度热处理后在0.05 mol/L H2SO4溶液中脱合金处理样品的平均孔径
图8  在773 K热处理的Fe76Si9B10P5合金分别在0.005、0.01和0.05 mol/L的H2SO4溶液中脱合金处理600、1800、3600 s后所得样品的SEM照片
图9  Fe76Si9B10P5非晶合金和脱合金Fe76Si9B10P5合金在6 mol/L KOH溶液中的CV曲线
图10  脱合金处理Fe76Si9B10P5合金在6 mol/L的 KOH溶液中的CV曲线和在不同扫描速率下氧化峰/还原峰的峰值电流密度的变化
图11  脱合金处理的Fe76Si9B10P5合金在CV测试后的SEM照片
图12  热处理Fe-Si-B-P合金脱合金的机制示意图
1 Liu N, Zhai Z H, Yu B, et al. Bifunctional nanoporous ruthenium-nickel alloy nanowire electrocatalysts towards oxygen/hydrogen evolution reaction [J]. Int. J. Hydrog. Energy, 2022, 47(73): 31330
doi: 10.1016/j.ijhydene.2022.07.067
2 Tang W G, Zhu S L, Jiang H, et al. Self-supporting nanoporous CoMoP electrocatalyst for hydrogen evolution reaction in alkaline solution [J]. J. Colloid Interface Sci., 2022, 625: 606
doi: 10.1016/j.jcis.2022.06.085
3 Yong Y L, Zhang W J, Hou Q H, et al. Highly sensitive and selective gas sensors based on nanoporous CN monolayer for reusable detection of NO, H2S and NH3: A first-principles study [J]. Appl. Surf. Sci., 2022, 606: 154806
doi: 10.1016/j.apsusc.2022.154806
4 Zheng X H, Qiao X F, Luo F Y, et al. Low-cost high-performance NO2 sensor based on nanoporous indium tin oxide (ITO) film [J]. Sens. Actuators., 2021, 346B: 130440
5 Yao L J, Li Y X, Ran Y, et al. Construction of novel Pd-SnO2 composite nanoporous structure as a high-response sensor for methane gas [J]. J. Alloys Compd., 2020, 826: 154063
doi: 10.1016/j.jallcom.2020.154063
6 Mohajer F, Ziarani G M, Badiei A, et al. Functionalized silica nanoporous Pd complex for reduction of nitroarenes and dyes [J]. Inorg. Chem. Commun., 2022, 144: 109936
doi: 10.1016/j.inoche.2022.109936
7 Lahiri S K, Zhang C, Sillanpää M, et al. Nanoporous NiO@SiO2 photo-catalyst prepared by ion-exchange method for fast elimination of reactive dyes from wastewater [J]. Mater. Today Chem., 2022, 23: 100677
8 Ye Z D, Miao R, Miao F J, et al. 3D nanoporous core-shell ZnO@Co3O4 electrode materials for high-performance supercapacitors and nonenzymatic glucose sensors [J]. J. Electroanal. Chem., 2021, 903: 115766
doi: 10.1016/j.jelechem.2021.115766
9 Shen W N, Dunn B, Moore C D, et al. Synthesis of nanoporous bismuth films by liquid-phase deposition [J]. J. Mater. Chem., 2000, 10A(3) : 657
10 Luo H M, Sun L, Lu Y F, et al. Electrodeposition of mesoporous semimetal and magnetic metal films from lyotropic liquid crystalline phases [J]. Langmuir, 2004, 20(23): 10218
pmid: 15518516
11 Snyder J, Livi K, Erlebacher J. Dealloying silver/gold alloys in neutral silver nitrate solution: porosity evolution, surface composition, and surface oxides [J]. J. Electrochem. Soc., 2008, 155(8): C464
doi: 10.1149/1.2940319
12 Dong H, Cao X D. Nanoporous gold thin film: fabrication, structure evolution, and electrocatalytic activity [J]. J. Phys. Chem., 2009, 113C(2) : 603
13 Wierzbicka E, Sulka G D. Nanoporous spongelike Au-Ag films for electrochemical epinephrine sensing [J]. J. Electroanal. Chem., 2016, 762: 43
doi: 10.1016/j.jelechem.2015.12.013
14 Hu L W, Liu X, Le G M, et al. Morphology evolution and SERS activity of the nanoporous Au prepared by dealloying sputtered Au-Ag film [J]. Physica, 2019, 558B: 49
15 Liu H T, He P, Li Z Y, et al. High surface area nanoporous platinum: facile fabrication and electrocatalytic activity [J]. Nanotechnology, 2006, 17(9): 2167
doi: 10.1088/0957-4484/17/9/015
16 Thorp J C, Sieradzki K, Tang L, et al. Crozier, A. Misra, M. Nastasi, D. Mitlin, S. T. Picraux. Formation of nanoporous noble metal thin films by electrochemical dealloying of Pt x Si1- x [J]. Appl. Phys. Lett., 2006, 88(3): 033110
17 Zhang X L, Li G J, Duan D, et al. Formation and control of nanoporous Pt ribbons by two-step dealloying for methanol electro-oxidation [J]. Corros. Sci., 2018, 135: 57
doi: 10.1016/j.corsci.2018.02.030
18 Viyannalage L T, Liu Y, Dimitrov N. Processing of nanoporous Ag layers by potential-controlled displacement (PCD) of Cu [J]. Langmuir, 2008, 24(15): 8332
doi: 10.1021/la800569t pmid: 18613704
19 Yeh F H, Tai C C, Huang J F, et al. Sun. Formation of porous silver by electrochemical alloying/dealloying in a water-insensitive zinc chloride-1-ethyl-3-methyl imidazolium chloride ionic liquid [J]. J. Phys. Chem., 2006, 110B(11) : 5215
20 Yi Q F, Huang W, Liu X P, et al. Electroactivity of titanium-supported nanoporous Pd-Pt catalysts towards formic acid oxidation [J]. J. Electroanal. Chem., 2008, 619-620: 197
doi: 10.1016/j.jelechem.2008.03.012
21 Lu H B, Li Y, Wang F H. Synthesis of porous copper from nanocrystalline two-phase Cu-Zr film by dealloying [J]. Scr. Mater., 2007, 56(2): 165
doi: 10.1016/j.scriptamat.2006.09.009
22 Chang J K, Hsu S H, Sun I W, et al. Formation of nanoporous nickel by selective anodic etching of the nobler copper component from electrodeposited nickel-copper alloys [J]. J. Phys. Chem., 2008, 112C(5) : 1371
23 Fukumizu T, Kotani F, Yoshida A, et al. Electrochemical formation of porous nickel in zinc chloride-alkali chloride melts [J]. J. Electrochem. Soc., 2006, 153(9): C629
doi: 10.1149/1.2216401
24 Qi Z, Zhao C C, Wang X G, et al. Formation and characterization of monolithic nanoporous copper by chemical dealloying of Al-Cu alloys [J]. J. Phys. Chem., 2009, 113C(16) : 6694
25 Jia F L, Yu C F, Deng K J, et al. Nanoporous metal (Cu, Ag, Au) films with high surface area: general fabrication and preliminary electrochemical performance [J]. J. Phys. Chem., 2007, 111C(24) : 8424
26 Dan Z H, Qin F X, Sugawara Y, et al. Fabrication of nanoporous copper by dealloying amorphous binary Ti-Cu alloys in hydrofluoric acid solutions [J]. Intermetallics, 2012, 29: 14
doi: 10.1016/j.intermet.2012.04.016
27 Xu C X, Liu Y Q, Wang J P, et al. Fabrication of nanoporous Cu-Pt(Pd) core/shell structure by galvanic replacement and its application in electrocatalysis [J]. ACS Appl. Mater. Interfaces, 2011, 3(12): 4626
doi: 10.1021/am201057t
28 Ou S L, Ma D G, Li Y H, et al. Fabrication and electrocatalytic properties of ferromagnetic nanoporous PtFe by dealloying an amorphous Fe60Pt10B30 alloy [J]. J. Alloys Compd., 2017, 706: 215
doi: 10.1016/j.jallcom.2017.02.203
29 Chen F, Zhou Y, Chen Y N, et al. Fabrication of nano-porous Co by dealloying for supercapacitor and azo-dye degradation [J]. Chin. J. Mater. Res., 2020, 34(12): 905
29 陈 峰, 周 洋, 陈彦南 等. 脱合金制备纳米多孔Co及其超级电容器和对偶氮染料的降解性能 [J]. 材料研究学报, 2020, 34(12): 905
30 Ma D G, Wang Y M, Li Y H, et al. Structure and properties of nanoporous FePt fabricated by dealloying a melt-spun Fe60Pt20B20 alloy and subsequent annealing [J]. J. Mater. Sci. Technol., 2020, 36: 128
doi: 10.1016/j.jmst.2019.05.066
31 Chi Y C, Chen F, Wang H N, et al. Highly efficient degradation of acid orange II on a defect-enriched Fe-based nanoporous electrode by the pulsed square-wave method [J]. J. Mater. Sci. Technol., 2021, 92: 40
doi: 10.1016/j.jmst.2021.03.041
32 Yu F, Zhou H Q, Zhu Z, et al. Three-dimensional nanoporous iron nitride film as an efficient electrocatalyst for water oxidation [J]. ACS Catal., 2017, 7: 2052
doi: 10.1021/acscatal.6b03132
33 Li Y G, Dai H J. Recent advances in zinc-air batteries [J]. Chem. Soc. Rev., 2014, 43(15): 5257
doi: 10.1039/c4cs00015c pmid: 24926965
34 Hu Y C, Wang Y Z, Su R, et al. A highly efficient and self-stabilizing metallic-glass catalyst for electrochemical hydrogen generation [J]. Adv. Mater., 2016, 28: 10293
doi: 10.1002/adma.v28.46
35 Černý J, Micka K. Voltammetric study of an iron electrode in alkaline electrolytes [J]. J. Power Sources, 1989, 25(2): 111
doi: 10.1016/0378-7753(89)85003-7
36 Fu C Q, Xu L J, Dan Z H, et al. Annealing effect of amorphous Fe-Si-B-P-Cu precursors on microstructural evolution and Redox behavior of nanoporous counterparts [J]. J. Alloys Compd., 2017, 726: 810
doi: 10.1016/j.jallcom.2017.08.045
37 Dan Z H, Qin F X, Zhang Y, et al. Mechanism of active dissolution of nanocrystalline Fe-Si-B-P-Cu soft magnetic alloys [J]. Mater. Charact., 2016, 121: 9
doi: 10.1016/j.matchar.2016.08.012
38 Liu P S. Calculation method for the specific surface area of porous metals [J]. Chin. J. Mater. Res., 2009, 23(4): 415
38 刘培生. 多孔金属比表面积的计算方法 [J]. 材料研究学报, 2009, 23(4): 415
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.