|
|
基于内部失效机理预测评估渗碳Cr-Ni齿轮钢的超高周疲劳强度 |
邓海龙1,2( ), 刘兵1, 郭扬1, 康贺铭1, 李明凯1, 李永平1 |
1.内蒙古工业大学机械工程学院 呼和浩特 010051 2.内蒙古工业大学 内蒙古自治区先进制造技术重点实验室 呼和浩特 010051 |
|
Prediction and Evaluation of Very-high Cycle Fatigue Strength of Carburized Cr-Ni Gear Steel Based on Interior Failure Mechanism |
DENG Hailong1,2( ), LIU Bing1, GUO Yang1, KANG Heming1, LI Mingkai1, LI Yongping1 |
1.School of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China 2.Key Laboratory of Inner Mongolia for Advanced Manufacturing Technology, Inner Mongolia University of Technology, Hohhot 010051, China |
引用本文:
邓海龙, 刘兵, 郭扬, 康贺铭, 李明凯, 李永平. 基于内部失效机理预测评估渗碳Cr-Ni齿轮钢的超高周疲劳强度[J]. 材料研究学报, 2023, 37(1): 55-64.
Hailong DENG,
Bing LIU,
Yang GUO,
Heming KANG,
Mingkai LI,
Yongping LI.
Prediction and Evaluation of Very-high Cycle Fatigue Strength of Carburized Cr-Ni Gear Steel Based on Interior Failure Mechanism[J]. Chinese Journal of Materials Research, 2023, 37(1): 55-64.
1 |
Takahashi K, Osedo H, Suzuki T, et al. Fatigue strength improvement of an aluminum alloy with a crack-like surface defect using shot peening and cavitation peening [J]. Eng. Fract. Mech., 2018, 193: 151
doi: 10.1016/j.engfracmech.2018.02.013
|
2 |
Xiao N, Hui W J, Zhang Y J, et al. High cycle fatigue behavior of a low carbon alloy steel: the influence of vacuum carburizing treatment [J]. Eng. Fail. Anal., 2020, 109: 104215
doi: 10.1016/j.engfailanal.2019.104215
|
3 |
Zhang T Y, Wu J S, Jin L, et al. Enhancing the mechanical and anticorrosion properties of 316L stainless steel via a cathodic plasma electrolytic nitriding treatment with added PEG [J]. J. Mater. Sci. Technol., 2019, 35(11): 2630
doi: 10.1016/j.jmst.2019.07.031
|
4 |
Hou F, Li J K, Xie S X, et al. Very high cycle fatigue properties of CrMoW rotor steel at high-temperature [J]. Chin. J. Mater. Res., 2016, 30(7): 481
doi: 10.11901/1005.3093.2015.322
|
4 |
侯 方, 李久楷, 谢少雄 等. CrMoW转子钢的高温超高周疲劳性能 [J]. 材料研究学报, 2016, 30(7): 481
|
5 |
Li C, Li W, Cai L, et al. Microstructure based cracking behavior and life assessment of titanium alloy under very-high-cycle fatigue with elevated temperatures [J]. Int. J. Fatigue, 2022, 161: 106914
doi: 10.1016/j.ijfatigue.2022.106914
|
6 |
Han S W, Yang X G, Shi D Q, et al. Microstructure-sensitive modeling of competing failure mode between surface and internal nucleation in high cycle fatigue [J]. Int. J. Plasticity, 2020, 126: 102622
doi: 10.1016/j.ijplas.2019.11.001
|
7 |
Kong W W, Yuan C, Zhang B N. Investigations on cyclic deformation behaviors and corresponding failure modes of a Ni-Based superalloy [J]. Mater. Sci. Eng., 2020, 791A: 139775
|
8 |
Lei L, Liang Y L, Jiang Y, et al. Effect of quench rate on the high cycle fatigue property of 60Si2CrVAT spring steels [J]. Chin. J. Mater. Res., 2017, 31(1): 65
|
8 |
雷 磊, 梁益龙, 姜 云 等. 淬火冷却速率对60Si2CrVAT弹簧钢高周疲劳性能的影响 [J]. 材料研究学报, 2017, 31(1): 65
|
9 |
Huang Y Q, Wang D, Lu Y Z, et al. Fatigue crack initiation behavior at intermediate temperature under high stress amplitude for single crystal superalloy DD413 [J]. Chin. J. Mater. Res., 2021, 35(7): 510
doi: 10.11901/1005.3093.2020.274
|
9 |
黄亚奇, 王 栋, 卢玉章 等. 第一代单晶高温合金中温高应力幅下的疲劳裂纹萌生行为 [J]. 材料研究学报, 2021, 35(7): 510
doi: 10.11901/1005.3093.2020.274
|
10 |
Murakami Y, Yokoyama N N, Nagata J. Mechanism of fatigue failure in ultralong life regime [J]. Fatigue Fract. Eng. Mater. Struct., 2002, 25(8-9): 735
doi: 10.1046/j.1460-2695.2002.00576.x
|
11 |
Shiozawa K, Morii Y, Nishino S, et al. Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime [J]. Int. J. Fat., 2006, 28(11): 1521
doi: 10.1016/j.ijfatigue.2005.08.015
|
12 |
Sakai T, Oguma N, Morikawa A. Microscopic and nanoscopic observations of metallurgical structures around inclusions at interior crack initiation site for a bearing steel in very high-cycle fatigue [J]. Fatigue Fract. Eng. Mater. Struct., 2015, 38(11): 1305
doi: 10.1111/ffe.12344
|
13 |
Hong Y S, Lei Z Q, Sun C Q, et al. Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels [J]. Int. J. Fatigue, 2014, 58: 144
doi: 10.1016/j.ijfatigue.2013.02.023
|
14 |
Murakami Y, Endo M. Effects of defects, inclusions and inhomogeneities on fatigue strength [J]. Int. J. Fatigue, 1994, 16(3): 163
doi: 10.1016/0142-1123(94)90001-9
|
15 |
Wang Q Y, Berard J Y, Dubarre A, et al. Gigacycle fatigue of ferrous alloys [J]. Fatigue Fract. Eng. Mater. Struct., 1999, 22(8): 667
doi: 10.1046/j.1460-2695.1999.t01-1-00185.x
|
16 |
Ding M C, Zhang Y L, Xian H W, et al. Fatigue strength prediction based on micro scratches [J]. J. Northeastern Univ. (Nat. Sci.), 2020, 41(5): 693
|
16 |
丁明超, 张元良, 咸宏伟 等. 基于微观划痕的疲劳强度预测 [J]. 东北大学学报(自然科学版), 2020, 41(5): 693
|
17 |
Choi B H, Song S H. Prediction of fatigue limit of induction surface hardened 1.05Cr–0.23Mo steel alloy using extreme value statistics [J]. J. Mater. Sci., 2005, 40(20): 5427
doi: 10.1007/s10853-005-2800-3
|
18 |
Sun Z D, Hou D B, Li Z Y. Prediction for fatigue strength and distribution features of inclusion of carburized Cr-Mn steel [J]. Ordnance Mater. Sci. Eng., 2021, 44(1): 98
|
18 |
孙振铎, 侯东勃, 李志远. 渗碳Cr-Mn钢的夹杂分布特性及疲劳强度预测 [J]. 兵器材料科学与工程, 2021, 44(1): 98
|
19 |
Deng H L, Liu H, Liu Q C, et al. Fatigue strength prediction of carburized 12Cr steel alloy: effects of evaluation of maximum crack sizes and residual stress distribution [J]. Fatigue Fract. Eng. Mater. Struct., 2020, 43(2): 342
doi: 10.1111/ffe.13149
|
20 |
Li Y D, Zhang L L, Zhang C, et al. Ultra-long life fatigue behavior of SUJ2 bearing steel [J]. J. Mater. Eng., 2016, 44(8): 85
|
20 |
李永德, 张莉莉, 张 冲 等. SUJ2轴承钢超长寿命疲劳行为研究 [J]. 材料工程, 2016, 44(8): 85
|
21 |
Deng H L, Liu B, Guo Y, et al. Effect of local equivalent stress on fatigue life prediction of carburized Cr-Ni alloy steel based on evaluation of maximum crack sizes [J]. Eng. Fract. Mech., 2021, 248: 107718
doi: 10.1016/j.engfracmech.2021.107718
|
22 |
Liu Z Y, Liu Y J, Liu P, et al. Effects of grain size on fatigue properties of K492 superalloy [J]. Chin. J. Mater. Res., 2018, 32(11): 834
|
22 |
刘志远, 刘勇军, 刘 鹏 等. 晶粒度对K492高温合金疲劳性能的影响 [J]. 材料研究学报, 2018, 32(11): 834
|
23 |
Gao N, Li W, Sun R, et al. A fatigue assessment approach involving small crack growth modelling for structural alloy steels with interior fracture behavior [J]. Eng. Fract. Mech., 2018, 204: 198
doi: 10.1016/j.engfracmech.2018.10.018
|
24 |
Sakai T. Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use [J]. J. Solid Mech. Mater. Eng., 2009, 3(3): 425
doi: 10.1299/jmmp.3.425
|
25 |
Tanaka K, Mura T. A theory of fatigue crack initiation at inclusions [J]. Metall. Trans., 1982, 13A(1) : 117
|
26 |
Chan K S. A microstructure-based fatigue-crack-initiation model [J]. Metall. Mater. Trans., 2003, 34A: 43
|
27 |
Cheng A S, Laird C. A quick and simple method for orienting cubic single crystals from Laue back-reflection photographs [J]. J. Appl. Cryst., 1982, 15: 137
doi: 10.1107/S0021889882011601
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|