Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (1): 55-64    DOI: 10.11901/1005.3093.2021.528
  研究论文 本期目录 | 过刊浏览 |
基于内部失效机理预测评估渗碳Cr-Ni齿轮钢的超高周疲劳强度
邓海龙1,2(), 刘兵1, 郭扬1, 康贺铭1, 李明凯1, 李永平1
1.内蒙古工业大学机械工程学院 呼和浩特 010051
2.内蒙古工业大学 内蒙古自治区先进制造技术重点实验室 呼和浩特 010051
Prediction and Evaluation of Very-high Cycle Fatigue Strength of Carburized Cr-Ni Gear Steel Based on Interior Failure Mechanism
DENG Hailong1,2(), LIU Bing1, GUO Yang1, KANG Heming1, LI Mingkai1, LI Yongping1
1.School of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
2.Key Laboratory of Inner Mongolia for Advanced Manufacturing Technology, Inner Mongolia University of Technology, Hohhot 010051, China
引用本文:

邓海龙, 刘兵, 郭扬, 康贺铭, 李明凯, 李永平. 基于内部失效机理预测评估渗碳Cr-Ni齿轮钢的超高周疲劳强度[J]. 材料研究学报, 2023, 37(1): 55-64.
Hailong DENG, Bing LIU, Yang GUO, Heming KANG, Mingkai LI, Yongping LI. Prediction and Evaluation of Very-high Cycle Fatigue Strength of Carburized Cr-Ni Gear Steel Based on Interior Failure Mechanism[J]. Chinese Journal of Materials Research, 2023, 37(1): 55-64.

全文: PDF(4124 KB)   HTML
摘要: 

对渗碳Cr-Ni齿轮钢进行应力比为0和0.3的室温超高周疲劳实验,观测试样中诱发裂纹萌生的夹杂和疲劳断口形貌,以全面评估渗碳Cr-Ni齿轮钢疲劳性能。将疲劳失效模式分为有细颗粒区(Fine granular area,FGA)的内部疲劳失效和有表面光滑区(Surface smooth area, SSA)的表面疲劳失效,并阐明了渗碳Cr-Ni齿轮钢的超高周内部疲劳破坏机制。基于累积损伤和位错能量法并结合细颗粒区形成机理和夹杂的最大评估尺寸,分别构建了两种渗碳Cr-Ni齿轮钢内部疲劳强度的预测模型。利用FGA尺寸与夹杂尺寸的比值和夹杂应力强度因子及应力比之间的关系,修正所提出的两种疲劳强度预测模型并给出了最大夹杂尺寸下的lFGA-S-N曲线。结果表明,基于累积损伤法和位错能量法分别构建的疲劳强度预测模型都可用于预测评估渗碳Cr-Ni齿轮钢在多种应力比下的内部疲劳强度,基于位错能量法的强度预测模型精度较高。

关键词 金属材料FGA尺寸评估失效机理累积损伤位错能量法疲劳强度预测    
Abstract

To evaluate the fatigue properties of carburized Cr-Ni gear steel, very high cycle fatigue tests were carried out at room temperature by stress ratios of 0 and 0.3. The fatigue failure modes of carburized Cr-Ni gear steel can be differentiated into interior fatigue failure with fine granular area (FGA) and surface fatigue failure with surface smooth area (SSA). According to the observation results of sites of inclusions and fatigue fracture morphology of the tested steels, therewith the interior very high cycle fatigue failure mechanism is clarified. Based on the cumulative damage method and the dislocation energy method, two kinds of interior fatigue strength prediction models for carburized Cr-Ni gear steels were established by taking the formation mechanism of fine granular area and the evaluated maximum size of inclusions into consideration. Based on the relationships between the relative size of FGA and the stress intensity factor of inclusion and stress ratio, the two fatigue strength prediction models were further modified, and the lFGA-S-N curves for the maximum size of inclusions was given. The results show that the fatigue strength prediction model based on the cumulative damage method and the dislocation energy method can be used to evaluate the interior fatigue strength of carburized Cr-Ni gear steel by various stress ratios, however the prediction accuracy of the model based on the dislocation energy method is higher.

Key wordsmetallic materials    FGA size evaluation    failure mechanism    cumulative damage    dislocation energy method    fatigue strength predictio
收稿日期: 2021-09-13     
ZTFLH:  TG111.8  
基金资助:内蒙古自治区自然科学基金(2022MS05014);内蒙古自治区自然科学基金(2021LHMS05009);内蒙古高等教育研究项目(NJZY21306);内蒙古自治区区直属高校基本科研业务费项目(JY20220233);内蒙古工业大学科学研究项目(ZY202005)
作者简介: 邓海龙,男,1986年生,博士
CSiMnSPCrNiFe
0.160.370.60.0350.0351.653.65Bal.
表1  齿轮钢的化学成分
图1  渗碳Cr-Ni齿轮钢的微观组织
图2  微观硬度和残余应力与深度的关系
图3  应力比为0和0.3时渗碳Cr-Ni齿轮钢的S-N曲线
图4  典型断口表面的形貌
图5  夹杂距离表面的深度
图6  裂纹特征尺寸与σa的关系
图7  RFGA/Rinc与1/ΔKinc2的关系
图8  内部失效机理
图9  σb/(σmax+σr)+lg(lg(RFGA/Rinc))与lgNf的关系
图10  基于GPD函数建立的lFGA-S-N曲线
Stress ratioExperimental strength/MPaPrediction strength (Model I)/MPaErrorPrediction strength (Model II)/MPaError
R = 0500458.540.08501.660.00
R = 0525475.270.09512.760.02
R = 0550484.620.12522.970.05
R = 0550482.060.12526.900.04
R = 0575525.700.09537.190.07
R = 0600502.770.16553.930.08
R = 0575507.940.12565.130.02
R = 0625542.830.13571.080.09
R = 0.3455400.790.12428.820.06
R = 0.3437.5396.790.09412.520.06
表2  GPD函数下对最大夹杂尺寸时疲劳强度的评估
1 Takahashi K, Osedo H, Suzuki T, et al. Fatigue strength improvement of an aluminum alloy with a crack-like surface defect using shot peening and cavitation peening [J]. Eng. Fract. Mech., 2018, 193: 151
doi: 10.1016/j.engfracmech.2018.02.013
2 Xiao N, Hui W J, Zhang Y J, et al. High cycle fatigue behavior of a low carbon alloy steel: the influence of vacuum carburizing treatment [J]. Eng. Fail. Anal., 2020, 109: 104215
doi: 10.1016/j.engfailanal.2019.104215
3 Zhang T Y, Wu J S, Jin L, et al. Enhancing the mechanical and anticorrosion properties of 316L stainless steel via a cathodic plasma electrolytic nitriding treatment with added PEG [J]. J. Mater. Sci. Technol., 2019, 35(11): 2630
doi: 10.1016/j.jmst.2019.07.031
4 Hou F, Li J K, Xie S X, et al. Very high cycle fatigue properties of CrMoW rotor steel at high-temperature [J]. Chin. J. Mater. Res., 2016, 30(7): 481
doi: 10.11901/1005.3093.2015.322
4 侯 方, 李久楷, 谢少雄 等. CrMoW转子钢的高温超高周疲劳性能 [J]. 材料研究学报, 2016, 30(7): 481
5 Li C, Li W, Cai L, et al. Microstructure based cracking behavior and life assessment of titanium alloy under very-high-cycle fatigue with elevated temperatures [J]. Int. J. Fatigue, 2022, 161: 106914
doi: 10.1016/j.ijfatigue.2022.106914
6 Han S W, Yang X G, Shi D Q, et al. Microstructure-sensitive modeling of competing failure mode between surface and internal nucleation in high cycle fatigue [J]. Int. J. Plasticity, 2020, 126: 102622
doi: 10.1016/j.ijplas.2019.11.001
7 Kong W W, Yuan C, Zhang B N. Investigations on cyclic deformation behaviors and corresponding failure modes of a Ni-Based superalloy [J]. Mater. Sci. Eng., 2020, 791A: 139775
8 Lei L, Liang Y L, Jiang Y, et al. Effect of quench rate on the high cycle fatigue property of 60Si2CrVAT spring steels [J]. Chin. J. Mater. Res., 2017, 31(1): 65
8 雷 磊, 梁益龙, 姜 云 等. 淬火冷却速率对60Si2CrVAT弹簧钢高周疲劳性能的影响 [J]. 材料研究学报, 2017, 31(1): 65
9 Huang Y Q, Wang D, Lu Y Z, et al. Fatigue crack initiation behavior at intermediate temperature under high stress amplitude for single crystal superalloy DD413 [J]. Chin. J. Mater. Res., 2021, 35(7): 510
doi: 10.11901/1005.3093.2020.274
9 黄亚奇, 王 栋, 卢玉章 等. 第一代单晶高温合金中温高应力幅下的疲劳裂纹萌生行为 [J]. 材料研究学报, 2021, 35(7): 510
doi: 10.11901/1005.3093.2020.274
10 Murakami Y, Yokoyama N N, Nagata J. Mechanism of fatigue failure in ultralong life regime [J]. Fatigue Fract. Eng. Mater. Struct., 2002, 25(8-9): 735
doi: 10.1046/j.1460-2695.2002.00576.x
11 Shiozawa K, Morii Y, Nishino S, et al. Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime [J]. Int. J. Fat., 2006, 28(11): 1521
doi: 10.1016/j.ijfatigue.2005.08.015
12 Sakai T, Oguma N, Morikawa A. Microscopic and nanoscopic observations of metallurgical structures around inclusions at interior crack initiation site for a bearing steel in very high-cycle fatigue [J]. Fatigue Fract. Eng. Mater. Struct., 2015, 38(11): 1305
doi: 10.1111/ffe.12344
13 Hong Y S, Lei Z Q, Sun C Q, et al. Propensities of crack interior initiation and early growth for very-high-cycle fatigue of high strength steels [J]. Int. J. Fatigue, 2014, 58: 144
doi: 10.1016/j.ijfatigue.2013.02.023
14 Murakami Y, Endo M. Effects of defects, inclusions and inhomogeneities on fatigue strength [J]. Int. J. Fatigue, 1994, 16(3): 163
doi: 10.1016/0142-1123(94)90001-9
15 Wang Q Y, Berard J Y, Dubarre A, et al. Gigacycle fatigue of ferrous alloys [J]. Fatigue Fract. Eng. Mater. Struct., 1999, 22(8): 667
doi: 10.1046/j.1460-2695.1999.t01-1-00185.x
16 Ding M C, Zhang Y L, Xian H W, et al. Fatigue strength prediction based on micro scratches [J]. J. Northeastern Univ. (Nat. Sci.), 2020, 41(5): 693
16 丁明超, 张元良, 咸宏伟 等. 基于微观划痕的疲劳强度预测 [J]. 东北大学学报(自然科学版), 2020, 41(5): 693
17 Choi B H, Song S H. Prediction of fatigue limit of induction surface hardened 1.05Cr–0.23Mo steel alloy using extreme value statistics [J]. J. Mater. Sci., 2005, 40(20): 5427
doi: 10.1007/s10853-005-2800-3
18 Sun Z D, Hou D B, Li Z Y. Prediction for fatigue strength and distribution features of inclusion of carburized Cr-Mn steel [J]. Ordnance Mater. Sci. Eng., 2021, 44(1): 98
18 孙振铎, 侯东勃, 李志远. 渗碳Cr-Mn钢的夹杂分布特性及疲劳强度预测 [J]. 兵器材料科学与工程, 2021, 44(1): 98
19 Deng H L, Liu H, Liu Q C, et al. Fatigue strength prediction of carburized 12Cr steel alloy: effects of evaluation of maximum crack sizes and residual stress distribution [J]. Fatigue Fract. Eng. Mater. Struct., 2020, 43(2): 342
doi: 10.1111/ffe.13149
20 Li Y D, Zhang L L, Zhang C, et al. Ultra-long life fatigue behavior of SUJ2 bearing steel [J]. J. Mater. Eng., 2016, 44(8): 85
20 李永德, 张莉莉, 张 冲 等. SUJ2轴承钢超长寿命疲劳行为研究 [J]. 材料工程, 2016, 44(8): 85
21 Deng H L, Liu B, Guo Y, et al. Effect of local equivalent stress on fatigue life prediction of carburized Cr-Ni alloy steel based on evaluation of maximum crack sizes [J]. Eng. Fract. Mech., 2021, 248: 107718
doi: 10.1016/j.engfracmech.2021.107718
22 Liu Z Y, Liu Y J, Liu P, et al. Effects of grain size on fatigue properties of K492 superalloy [J]. Chin. J. Mater. Res., 2018, 32(11): 834
22 刘志远, 刘勇军, 刘 鹏 等. 晶粒度对K492高温合金疲劳性能的影响 [J]. 材料研究学报, 2018, 32(11): 834
23 Gao N, Li W, Sun R, et al. A fatigue assessment approach involving small crack growth modelling for structural alloy steels with interior fracture behavior [J]. Eng. Fract. Mech., 2018, 204: 198
doi: 10.1016/j.engfracmech.2018.10.018
24 Sakai T. Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use [J]. J. Solid Mech. Mater. Eng., 2009, 3(3): 425
doi: 10.1299/jmmp.3.425
25 Tanaka K, Mura T. A theory of fatigue crack initiation at inclusions [J]. Metall. Trans., 1982, 13A(1) : 117
26 Chan K S. A microstructure-based fatigue-crack-initiation model [J]. Metall. Mater. Trans., 2003, 34A: 43
27 Cheng A S, Laird C. A quick and simple method for orienting cubic single crystals from Laue back-reflection photographs [J]. J. Appl. Cryst., 1982, 15: 137
doi: 10.1107/S0021889882011601
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.