Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (1): 47-54    DOI: 10.11901/1005.3093.2021.634
  研究论文 本期目录 | 过刊浏览 |
无取向硅钢中第二相的析出行为
徐阳1, 李彦睿1, 刘宝胜1(), 刘雯1, 张少华1, 卫英慧1,2
1.太原科技大学材料科学与工程学院 太原 030024
2.太原理工大学材料科学与工程学院 太原 030024
Precipitation of Second Phase in Non-oriented Silicon Steel
XU Yang1, LI Yanrui1, LIU Baosheng1(), LIU Wen1, ZHANG Shaohua1, WEI Yinghui1,2
1.College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
2.College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
引用本文:

徐阳, 李彦睿, 刘宝胜, 刘雯, 张少华, 卫英慧. 无取向硅钢中第二相的析出行为[J]. 材料研究学报, 2023, 37(1): 47-54.
Yang XU, Yanrui LI, Baosheng LIU, Wen LIU, Shaohua ZHANG, Yinghui WEI. Precipitation of Second Phase in Non-oriented Silicon Steel[J]. Chinese Journal of Materials Research, 2023, 37(1): 47-54.

全文: PDF(6715 KB)   HTML
摘要: 

使用扫描电镜(SEM)和能谱仪(EDS)等手段并结合热力学和动力学计算,研究了无取向硅钢900~1000℃常化处理过程第二相的析出行为。结果表明,无取向硅钢中的第二相主要为AlN和少量MnS。AlN和MnS在不同基体相(α相、γ相及(α+γ)两相)中有三种析出形核机制(均匀形核、晶界形核和位错形核),其临界形核半径(d*)都随常化温度的提高而增大。在同一温度下,相对于其他基体相AlN在(α+γ)两相区中晶界形核的临界形核功最小,相对形核率最大,因此以晶界形核为主;而MnS在α相中位错线上临界形核半径最小,相对形核率大,开始析出温度低,因此以位错形核为主。

关键词 金属材料无取向硅钢第二相热处理热力学动力学    
Abstract

The precipitation behavior of second phase in non-oriented silicon steel during normalization treatment at 900~1000℃ was investigated by means of scanning electron microscope (SEM) observation and energy dispersive spectrometer (EDS), and thermodynamic and kinetic calculations. The result show that the second phases in non-oriented silicon steel are mainly AlN with a small amount of MnS. The critical nucleation radius (d*) of AlN and MnS particles increases with the increase of precipitation temperature for different matrix phases, namely α-phase, γ-phase and (α+γ) two-phase respectively, which accord with three different precipitation nucleation mechanisms i.e. uniform nucleation, grain boundary nucleation and dislocation nucleation. By taking the second phase nucleation behavior at the same temperature as comparison, among others the critical nucleation work of grain boundary nucleation of AlN is the smallest, the relative nucleation rate is the largest, so grain boundary nucleation is easy to occur in (α+γ) two-phase area. Besides, the critical nucleation radius of MnS on the dislocation line is the smallest, the relative nucleation rate is large, and the initial precipitation temperature is low, therefore, the dislocation nucleation is dominated for MnS precipitates in the α-phase matrix.

Key wordsmetallic materials    non-oriented silicon steel    second phase    heat treatment    thermodynamics    dynamics
收稿日期: 2021-11-11     
ZTFLH:  TG142.7  
基金资助:山西省科技重大专项(20191102004);山西省重点研发计划项目(202003D111001);山西省重点研发计划项目(201903D111008)
作者简介: 徐阳,男,1997年生,硕士生
CSiMnSAlTiN
0.0022.05020.26980.0020.2580.00150.0018
表1  无取向硅钢的化学成分
PrecipitationAlNMnS
Kw[Al]w[N]w[Mn]w[S]

Solid solubility

in (α+γ) phase lg K

2.72-10062 / T2.929-14885 / T

Solid solubility

in α phase lg K

1.69-8296 / T[5]4.092-10590 / T[5]

Solid solubility

in γ phase lg K

1.95-7400 / T[5]2.929-9220 / T[5]
表2  AlN和MnS在不同相中的平衡固溶度积公式
图1  常化板中第二相的形貌和EDS能谱分析
图2  Fe-Si二元相图和温度控制
图3  不同基体相中AlN和MnS粒子的平衡析出量

Precipitation

temperature/℃

Precipitation maximum amount/%, mass fraction

Precipitation equilibrium

amount/%, mass fraction

AlN(α+γ)13896.20×10-36.06×10-3 (97.75%)
AlN(α)13806.13×10-35.84×10-3 (95.32%)
AlN(γ)11285.11×10-33.07×10-3 (60.19%)
MnS(α+γ)21266.85×10-36.85×10-3 (99.89%)
MnS(α)11666.56×10-35.41×10-3 (80.55%)
MnS(γ)12206.55×10-35.66×10-3 (86.38%)
表3  在不同常化温度下AlN和MnS的平衡沉淀量
图4  形核机制不同的AlN(a)和MnS(b)的临界形核尺寸(d*)
图5  形核机制不同的AlN和MnS的临界形核能
图6  形核机制不同的AlN的相对形核速率和MnS的相对形核速率
图7  形核机制不同的AlN的PTT曲线和MnS的PTT曲线

Phase

region

Fastest precipitation temperature / ℃

Homogeneous

nucleation

Grain boundary

nucleation

Dislocation

nucleation

AlNMnSAlNMnSAlNMnS
(α+γ)803116096011569241173
α782958926983761960
γ722683685659645709
表4  三种不同的形核机制的AlN和MnS在形核过程中的最快沉淀温度
1 Zhang Z Y, Mao W M, Gao Z Yet al. Effect of process parameters on recrystallization texture of cold rolled non oriented silicon steel [J]. J. Mater. Heat Treat., 2010, 31(6): 102
1 张智义, 毛卫民, 高振宇 等. 工艺参数对冷轧无取向硅钢再结晶织构的影响 [J]. 材料热处理学报, 2010, 31(6): 102
2 He Z Z, Zhao Y, Luo H W. Electrical Steel [M]. Beijing: Metallurgical Industry Press, 2012
2 何忠治, 赵 宇, 罗海文. 电工钢 [M]. 北京: 冶金工业出版社, 2012
3 Miao L D, Zhang Y, Zhang F, et al. Qualitative and quantitative analysis of inclusions in different grades of non oriented silicon steel [J]. Metall. Anal., 2012, 32(10): 7
3 缪乐德, 张 毅, 张 峰 等. 不同牌号无取向硅钢夹杂物定性定量分析 [J]. 冶金分析, 2012, 32(10): 7
4 Lv X J, Zhang F, Wang B, et al. Effect of inclusions on magnetic properties of non oriented silicon steel [J]. Spe. teel, 2012, 33 (4): 22
4 吕学钧, 张 峰, 王 波 等. 夹杂物对无取向硅钢磁性能的影响[J]. 特殊钢, 2012, 33(4): 22
5 Yong Q L. Secondary Phases in Steel [M]. Beijing: Metallurgical Industry Press, 2006
5 雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006
6 Sennour M, Esnouf C. Contribution of advanced microscopy techniques to nano-precipitates characterization: case of AlN precipitation in low-carbon steel [J]. Acta Mater., 2003, 51(4): 943
doi: 10.1016/S1359-6454(02)00498-6
7 Okenko A P, Ivanenkov M I, Kulkova M N. Fine precipitates in the grain boundaries of transformer steel [J]. Met. Sci. Heat Treat., 1971, 13(5): 376
doi: 10.1007/BF00652439
8 Nakayama T, Takahashi M. Effects of vanadium on magnetic properties of semi-processed non-oriented electrical steel sheets [J]. J. Mater. Sci., 1995, 30(23): 5979
doi: 10.1007/BF01151515
9 Taisei, Nakayama T, Takahashi M, et al. Effects of titanium on magnetic properties of semi-processed non-oriented electrical steel sheets [J]. J. Mater. Sci., 1997, 32(4): 1055
doi: 10.1023/A:1018590725223
10 Hou C K, Hu C T, Lee S. The effect of titanium and niobium on degradation of magnetic properties of lamination steels [J]. J. Magn. Magn. Mater., 1990, 87(1/2): 44
doi: 10.1016/0304-8853(90)90192-S
11 Oh J H, Cho S H, Jonas J J. AlN precipitation in dual-phase 3% electrical steel [J]. ISIJ Inter., 2001, 41: 484
doi: 10.2355/isijinternational.41.484
12 Iwayama K, Haratani T. The dissolution and precipitation behavior of AlN and MnS in grain-oriented 3% silicon-steel with high permeability [J]. J. Magn. Magn. Mater., 1980, 19: 15
doi: 10.1016/0304-8853(80)90540-5
13 Yan J X, Fu B, Xiang L, Thermodynamics of AlN and MnS precipitation during continuous casting and soaking of low temperature and high magnetic induction oriented silicon steel [J]. J. Iron Steel Res., 2014, 26(10): 35
13 颜建新, 付 兵, 项 利. 低温高磁感取向硅钢连铸与均热过程AlN与MnS析出的热力学 [J]. 钢铁研究学报, 2014, 26(10): 35
14 Liu G P, Ling C, Fan L F, Kinetics of AlN precipitation in oriented silicon steel [J]. J. Iron Steel Res., 2014. 26(12): 60
14 刘国平, 凌 晨, 樊立峰. 取向硅钢中AlN析出的动力学 [J]. 钢铁研究学报, 2014. 26(12): 60
15 Liu L, Qiao J L, Yin S B. Kinetic calculation of AlN precipitation in austenite of oriented silicon steel [J]. Steel Vanadium Titanium, 2020, 41(2): 158
15 刘 磊, 乔家龙, 尹思博. 取向硅钢γ相中AlN沉淀析出的动力学计算 [J]. 钢铁钛钒, 2020, 41(2): 158
16 Meng L, Ji J J, He C X, et al. Kinetics calculation and analysis of MnS particles nucleation precipitation in grain-oriented silicon steel [J]. Heat Treat.Metals., 2015, 40(3):11
16 孟 利, 汲家骏, 何承绪 等. 取向硅钢中MnS粒子形核析出的动力学计算与分析 [J]. 金属热处理, 2015, 40(3): 11
17 Xiang L, Yue E B, Fan D D, et al. Calculation of AlN and MnS precipitation in Non-oriented electrical steel produced by CSP process [J]. J. Iron Steel Res (Inter)., 2008, 15: 88
18 Akamatsu S, Senuma T, Hasebe M, Generalized Nb(C, N) precipitation model applicable to extra low carbon steel [J]. ISIJ Inter., 1992, 32: 275
doi: 10.2355/isijinternational.32.275
19 Wang H J, Fu B, Xiang L, et al. Nucleation mechanism of precipitate of AlN in ferrite phase of Hi-B steel [J]. J. Iron Steel Res., 2015, 27(10): 40
19 王海军, 付 兵, 项 利 等. AlN 在Hi-B钢铁素体相中析出的形核机制 [J]. 钢铁研究学报, 2015, 27(10): 40
20 Zhang K, Sun X J, Zhang M Y, et al. Kinetics of (Ti, V, Mo) C precipitated in γ/α matrix of Ti-V-Mo complex microalloyed steel [M]. Acta. Metall. Sin., 2018, (8): 1122
20 张 可, 孙新军, 张明亚 等. Ti-V-Mo复合微合金钢中(Ti, V, Mo) C在γ/α中沉淀析出析出的动力学 [M]. 冶金学报, 2018, (8): 1122
21 Chen Y L, Wang Y, Zhao A M. Precipitation of AlN and MnS in low carbon aluminium-killed steel [J]. J. Iron Steel Res(Inter)., 2012, (4): 54
22 An Z G, Mao W M. Precipitation nucleation behaviors of MnS particles in a grain-oriented electrical steel [J]. Trans. Mater. Heat Treat., 2010, 31(2): 45
22 安治国, 毛卫民. 取向电工钢中MnS粒子析出形核行为 [J]. 材料与热处理学报, 2010, 31(2): 45
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.