|
|
BaTiO3 纳米线的长径比对聚间苯二甲酰间苯二胺复合材料介电性能的影响 |
段广宇1, 胡静文2, 胡祖明2, 于翔1, 迟长龙1, 李玥1( ) |
1.河南工程学院材料工程学院 郑州 450007 2.东华大学 纤维材料改性国家重点实验室 上海 201620 |
|
Influence of BaTiO3 Nanowire Aspect Ratio on Dielectric Property of Poly (Metaphenylene Isophthalamide) Composite |
DUAN Guangyu1, HU Jingwen2, HU Zuming2, YU Xiang1, CHI Changlong1, LI Yue1( ) |
1.College of Materials Engineering, Henan University of Engineering, Zhengzhou 450007, China 2.State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China |
引用本文:
段广宇, 胡静文, 胡祖明, 于翔, 迟长龙, 李玥. BaTiO3 纳米线的长径比对聚间苯二甲酰间苯二胺复合材料介电性能的影响[J]. 材料研究学报, 2022, 36(7): 527-535.
Guangyu DUAN,
Jingwen HU,
Zuming HU,
Xiang YU,
Changlong CHI,
Yue LI.
Influence of BaTiO3 Nanowire Aspect Ratio on Dielectric Property of Poly (Metaphenylene Isophthalamide) Composite[J]. Chinese Journal of Materials Research, 2022, 36(7): 527-535.
1 |
Shen Y, Zhang X, Li M, et al. Polymer nanocomposite dielectrics for electrical energy storage [J]. Natl. Sci. Rev., 2017, 4: 23
doi: 10.1093/nsr/nww066
|
2 |
Prateek, Vijay K T, Raju K G. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects [J]. Chem. Rev., 2016, 116: 4260
doi: 10.1021/acs.chemrev.5b00495
pmid: 27040315
|
3 |
Hu H L, Zhang F, Luo S B, et al. Recent advances in rational design of polymer nanocomposite dielectrics for energy storage [J]. Nano Energy, 2020, 74: 104844
doi: 10.1016/j.nanoen.2020.104844
|
4 |
Li Q, Yao F Z, Liu Y, et al. High-temperature dielectric materials for electrical energy storage [J]. Annu. Rev. Mater. Sci., 2018, 48: 219
doi: 10.1146/annurev-matsci-070317-124435
|
5 |
Janet S H, Steven G G. Polymer capacitor dielectrics for high temperature applications [J]. ACS Appl. Mater. Interfaces 2018, 10: 29189
|
6 |
Li H, Liu F H, Fan B, et al. Nanostructured ferroelectric-polymer composites for capacitive energy storage [J]. Small Methods, 2018, 6: 1700399
|
7 |
Zhu X T, Yang J, Davoud D, et al. Fabrication of core-shell structured Ni@BaTiO3 scaffolds for polymer composites with ultrahigh dielectric constant and low loss [J]. Compos. Part A: Appl. Sci. Manufac., 2019, 125: 105521
doi: 10.1016/j.compositesa.2019.105521
|
8 |
Liu S H, Zhai J W. Improving the dielectric constant and energy density of poly(vinylidene fluoride) composites induced by surface-modified SrTiO3 nanofibers by polyvinylpyrrolidone [J]. J. Mater. Chem. C, 2015, 3: 1511
|
9 |
He D L, Wang Y, Chen X Q, et al. Core-shell structured BaTiO3@Al2O3 nanoparticles in polymer composites for dielectric loss suppression and breakdown strength enhancement [J]. Compos. Part A: Appl. Sci. Manufac., 2017, 93: 137
doi: 10.1016/j.compositesa.2016.11.025
|
10 |
Wang J, Liu S H, Wang J Y, et al. Improving dielectric properties and energy storage performance of poly(vinylidene fluoride) nanocomposite by surface-modified SrTiO3 nanoparticles [J]. J. Alloy. Compd., 2017, 726: 587
doi: 10.1016/j.jallcom.2017.07.341
|
11 |
Feng Y L, Li W F, Hou Y, et al. Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape [J]. J. Mater. Chem. C, 2015, 3: 1250
doi: 10.1039/C4TC02183E
|
12 |
Huang X Y, Sun B, Zhu Y K, et al. High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications [J]. Prog. Mater. Sci., 2019, 100: 187
doi: 10.1016/j.pmatsci.2018.10.003
|
13 |
Duan G Y, Wang Y, Yu J R, et al. Preparation of PMIA dielectric nanocomposite with enhanced thermal conductivity by filling with functionalized graphene-carbon nanotube hybrid fillers [J]. Appl. Nanosci., 2019, 9: 1743
doi: 10.1007/s13204-019-00955-0
|
14 |
Tang H, Zhou Z, Sodano H A. Relationship between BaTiO3 nanowire aspect ratio and the dielectric permittivity of nanocomposites [J]. ACS Appl. Mater. Interfaces, 2014, 6: 5450
doi: 10.1021/am405038r
|
15 |
Duan G Y, Cao Y, Quan J Y, et al. Bioinspired construction of BN@polydopamine@Al2O3 fillers for preparation of a polyimide dielectric composite with enhanced thermal conductivity and breakdown strength [J]. Journal of Materials Science, 2020, 55: 8170
doi: 10.1007/s10853-020-04596-5
|
16 |
Jin Y, Xia N, Gerhardt R A. Enhanced dielectric properties of polymer matrix composites with BaTiO3 and MWCNT hybrid fillers using simple phase separation [J]. Nano Energy, 2016, 30: 407
doi: 10.1016/j.nanoen.2016.10.033
|
17 |
Luo S B, Shen Y B, Yu S H, et al. Construction of a 3D-BaTiO3 network leading to significantly enhanced dielectric permittivity and energy storage density of polymer composites [J]. Energy Environ. Sci., 2017, 10: 137
doi: 10.1039/C6EE03190K
|
18 |
Wu J, Qin N, Bao D H, et al. Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration [J]. Nano Energy, 2018, 45: 44
doi: 10.1016/j.nanoen.2017.12.034
|
19 |
Hu P H, Sun W, D, Fan M Z, et al. Large energy density at high-temperature and excellent thermal stability in polyimide nanocomposite contained with small loading of BaTiO3 nanofibers [J]. Appl. Surf. Sci., 2018, 458: 743
doi: 10.1016/j.apsusc.2018.07.128
|
20 |
Nagao M, Kimura T, Mizuno Y, et al. Detection of Joule Heating before Dielectric Breakdown in Polyethylene[J]. IEEE T. Dielect. El. In., 1990, 25: 715
|
21 |
Wang Z D, Yang M M, Cheng Y H, et al. Dielectric properties and thermal conductivity of epoxy composites using quantum-sized silver decorated core/shell structured alumina/polydopamine [J]. Compos. Part A: Appl. Sci. Manufac., 2019, 118: 302
doi: 10.1016/j.compositesa.2018.12.022
|
22 |
Chanmal V C. Dielectric relaxations in PVDF/BaTiO3 nanocomposites [J]. Express Polym. Lett., 2008, 2: 294
doi: 10.3144/expresspolymlett.2008.35
|
23 |
Pan Z B, Yao L M, Zhai J W, et al. Interfacial Coupling Effect in Organic/Inorganic Nanocomposites with High Energy Density [J]. Adv. Mater., 2018, 30: 1705662
doi: 10.1002/adma.201705662
|
24 |
Luo H, Wu Z, Zhou X F, et al. Enhanced performance of P(VDF-HFP) composites using two-dimensional BaTiO3 platelets and graphene hybrids [J]. Compos. Sci. Technol., 2018, 160: 237
doi: 10.1016/j.compscitech.2018.03.034
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|