Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (7): 519-526    DOI: 10.11901/1005.3093.2020.542
  研究论文 本期目录 | 过刊浏览 |
小型金纳米棒的制备
胡青1, 吴春芳1(), 张凯锋2, 潘浩1, 李坤2
1.西安工业大学光电工程学院 西安 710021
2.兰州空间技术物理研究所 真空技术与物理重点实验室 兰州 730000
Preparation of Small Gold Nanorods
HU Qing1, WU Chunfang1(), ZHANG Kaifeng2, PAN Hao1, LI Kun2
1.School of Optoelectronic Engineering, Xi'an Technological University, Xi'an 710021, China
2.Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institutute of Physics, Lanzhou 730000, China
引用本文:

胡青, 吴春芳, 张凯锋, 潘浩, 李坤. 小型金纳米棒的制备[J]. 材料研究学报, 2022, 36(7): 519-526.
Qing HU, Chunfang WU, Kaifeng ZHANG, Hao PAN, Kun LI. Preparation of Small Gold Nanorods[J]. Chinese Journal of Materials Research, 2022, 36(7): 519-526.

全文: PDF(14213 KB)   HTML
摘要: 

用种子生长法合成小型金纳米棒,改变合成参数可调控其形貌和性能。使用紫外-可见-近红外分光光度计和透射电子显微镜(TEM)测试和观察了金纳米棒的消光特性和形貌,研究了AgNO3、十六烷基三甲基溴化铵(CTAB)和籽晶的用量对金纳米棒的形貌和性能的影响。结果表明:在不同条件下制备的金纳米棒具有良好的重现性。在(0.01 mol/L) AgNO3用量为0.035 mL、(0.1 mol/L) CTAB用量为11 mL、籽晶用量为1.1 mL的最佳条件下合成的金纳米棒,其长径比约为3.8,平均长度约为34 nm,形貌均匀性和分散性良好。这种小型金纳米棒可用于检测残留物福美双(Thiram)。

关键词 金属材料金纳米棒种子生长法长径比福美双    
Abstract

Small gold nanorods were synthesized by seed growth method. The morphology and properties of the nanorods could be controlled by changing the synthesis parameters. The extinction characteristics and morphology of gold nanorods were measured and observed by uV-vis-nIR spectrophotometer and transmission electron microscope (TEM). The effects of the amount of AgNO3, cetyltrimethyl ammonium bromide (CTAB) and seed crystal on the morphology and properties of gold nanorods were investigated. The results show that the gold nanorods prepared under different conditions have good reproducibility. The gold nanorods synthesized under the optimum conditions of 0.035 mL of (0.01 mol/L) AgNO3, 11 mL of (0.1 mol/L) CTAB and 1.1 mL of seed crystal, have an aspect ratio of about 3.8, an average length of about 34 nm, and good morphology uniformity and dispersion. The small gold nanorods could be used to detect a residue called Thiram.

Key wordsmetallic materials    gold nanorods    seed-mediated growth method    aspect ratio    thiram
收稿日期: 2020-12-21     
ZTFLH:  TB31  
基金资助:装备预研重点实验室基金(6142207190407);陕西省教育厅科研计划(21JY018)
作者简介: 胡 青,女,1995年生,硕士生
图1  制备晶种溶液的流程图
图2  制备生长溶液的流程图
图3  AgNO3(0.035、0.065、0.08、0.1 mL)用量不同的金纳米棒的吸收光谱
图4  AgNO3(a: 0.035 mL、b: 0.065 mL、c: 0.08 mL、d: 0.1 mL)用量不同的金纳米棒的TEM照片
0.01 mol/L AgNO3 /mL

Length

/nm

Diameter

/nm

Aspect ratio

(R=L/D)

Longitudinal SPR

/nm

Yield

/%

0.03544.510.54.285796
0.06539.19.64.184898
0.0838.29.73.983294
0.132.98.93.781390
表1  AgNO3用量对金纳米棒平均长度、直径、长径比、纵向共振峰波长和产率的影响
图5  籽晶(0.65 mL、0.8 mL、1 mL、1.1 mL)用量不同的金纳米棒的吸收光谱
图6  籽晶(a: 0.65 mL、b: 0.8 mL、c: 1 mL、d: 1.1 mL)用量不同的金纳米棒的TEM照片

Au seed

/mL

Length

/nm

Diameter

/nm

Aspect ratio

(R=L/D)

Longitudinal SPR

/nm

Yield

/%

0.6539.69.54.285599
0.838.59.83.983895
132.78.93.781490
1.129.98.33.680998
表2  籽晶用量对金纳米棒平均长度、直径、长径比、纵向共振峰波长和产率的影响
图7  CTAB(7 mL、9 mL、11 mL、13 mL)用量不同的金纳米棒的吸收光谱
图8  CTAB(a: 7 mL、b: 9 mL、c: 11 mL、d: 13 mL)用量不同的金纳米棒的TEM照片

0.1 mol/L CTAB

/mL

Length

/nm

Diameter

/nm

Aspect

ratio

(R=L/D)

Longitudinal SPR

/nm

Yield

/%

733.99.23.781596
932.78.63.882287
1135.59.13.983789
1336.69.33.984393
表3  CTAB用量对金纳米棒平均长度、直径、长径比、纵向共振峰波长和产率的影响
图9  在优化条件下制备的金纳米棒的吸收光谱
图10  在优化条件下制备的金纳米棒的TEM照片
图11  金纳米棒的长度分布柱状图
图12  用金纳米棒检测福美双的拉曼增强光谱以及1374 cm-1处的特征峰强度与福美双浓度的关系
1 Gu B Y. Surface plasmon subwavelength optics:principles and novel effects [J]. Phys, 2007, 36(04): 280
1 顾本源. 表面等离子体亚波长光学原理和新颖效应 [J]. 物理, 2007(04): 280
2 Behafarid F, Matos J, Hong S, et al. Structural and electronic properties of micellar Au nanoparticles: size and ligand effects [J]. Acs Nano, 2014, 8(7): 6671
doi: 10.1021/nn406568b pmid: 24437393
3 Ding S Y, Yi J, Li J F, et al. Nanostructure-based plasmon-enhanced raman spectroscopy for surface analysis of materials [J]. Nat. Rev. Mater., 2016, 1(6): 1
4 Davletshin Y R, Lombardi A, Cardinal M F, et al. A quantitative study of the environmental effects on the optical response of gold nanorods [J]. Acs Nano, 2012, 6(9): 8183
pmid: 22931408
5 Ali M R, Wu Y, Tang Y, et al. Targeting cancer cell integrins using gold nanorods in photothermal therapy inhibits migration through affecting cytoskeletal proteins [J]. Proc. Natl. Acad. Sci. USA, 2017, 114(28): E5655
6 Nima Z A, Alwbari A M, Dantuluri V, et al. Targeting nano drug delivery to cancer cells using tunable, multi-layer, silver-decorated gold nanorods [J]. J. Appl. Toxicol., 2017, 37(12): 1370
doi: 10.1002/jat.3495
7 Bolaños-Benítez V, McDermott F, Gill L, et al. Engineered silver nanoparticle (Ag-NP) behaviour in domestic on-site wastewater treatment plants and in sewage sludge amended-soils [J]. Sci. Total Environ., 2020, 722(137794): 1
8 Paulo P M, Zijlstra P, Orrit M, et al. Tip-specific functionalization of gold nanorods for plasmonic biosensing: effect of linker chain length [J]. Langmuir, 2017, 33(26): 6503
doi: 10.1021/acs.langmuir.7b00422
9 Schörner C, Adhikari S, Lippitz M. A single-crystalline silver plasmonic circuit for visible quantum emitters [J]. Nano Lett., 2019, 19(5): 3238
doi: 10.1021/acs.nanolett.9b00773
10 Schlücker S. Surface-enhanced raman spectroscopy: concepts and chemical applications [J]. Angew. Chem. Int. Ed., 2014, 53(19): 4756
doi: 10.1002/anie.201205748
11 Sanzortiz M N, Sentosun K, Bals S, et al. Templated growth of surface enhanced raman scattering-active branched gold nanoparticles within radial mesoporous silica shells [J]. ACS Nano, 2015, 9(10): 10489
doi: 10.1021/acsnano.5b04744 pmid: 26370658
12 Katzmann J, Hartling T. Nanorod formation by photochemical metal deposition in nanoporous aluminum oxide templates [J]. J. Phys. Chem. C, 2012, 116(44): 23671
doi: 10.1021/jp303896a
13 Sharma M K, Ambolikar A S, Aggarwal S K, et al. Electrochemical synthesis of gold nanorods in track-etched polycarbonate membrane using removable mercury cathode [J]. J. Nanopart. Res., 2012, 14(9):1
14 Chang H H, Murphy C J. Mini gold nanorods with tunable plasmonic peaks beyond 1000 nm [J]. Chem. Mater., 2018, 30(4): 1427
doi: 10.1021/acs.chemmater.7b05310
15 Lu W S, Wang H F, Zhang J P, et al. Gold nanorods: synthesis, growth mechanism and purification [J]. Prog. Chem., 2015, 27(07): 785
15 鲁闻生, 王海飞, 张建平 等. 金纳米棒的制备、生长机理及纯化 [J]. 化学进展, 2015, 27(07): 785
16 Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods [J]. J. Phys. Chem. B, 2001, 105(19): 4065
doi: 10.1021/jp0107964
17 Nikoobakht B, El-Sayed M A. Preparation and growth mechanism of gold nanorods (NRs) using seed-med -iated growth method [J]. Chem. Mater., 2003, 15(10): 1957
doi: 10.1021/cm020732l
18 Jia H, Fang C, Zhu X M, et al. Synthesis of absorption-dominant small gold nanorods and their plasmonic properties [J]. Langmuir, 2015, 31(26): 7418
doi: 10.1021/acs.langmuir.5b01444
19 Huang Y J, Zhou X Y, Li Z J, et al. Seed-mediated synthesis of size-tunable and monodisperse gold nanorods through the use of anionic surfactant as additives [J]. Chinese J. Inorg. Chem., 2013, 29(06): 1141
19 黄颖娟, 周晓燕, 李在均 等. 阴离子表面活性剂作为添加剂种子生长法制备尺寸可调的单分散金纳米棒 [J]. 无机化学学报, 2013, 29(06): 1141
20 Koczkur K M, Mourdikoudis S, Polavarapu L, et al. Polyvinylpyrrolidone(PVP) in nanoparticle synthesis [J]. RSC, 2015, 44(41): 17883
21 Gao Q, Qian Y, Xia Y, et al. A novel method to prepare high-aspect ratio gold nanorods [J]. Acta Chim. Sinica, 2011, 69(14): 1617
21 高 倩, 钱 勇, 夏 炎 等. 一种制备高长径比金纳米棒的新方法 [J]. 化学学报, 2011, 69(14): 1617
22 Pastorello M, Sigoli F A, Dos Santos D P, et al. On the use of Au@Ag core-shell nanorods for SERS detection of thiram diluted solutions [J]. Spectrochim. Acta A, 2020, 231(118113): 1
23 Yu Y, Zeng P, Yang C, et al. Gold nanorod-coated capillaries for the SERS-based detection of thiram [J]. Acs Appl. Nano Mater., 2019, 2(1): 598
doi: 10.1021/acsanm.8b02075
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.