Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (7): 527-535    DOI: 10.11901/1005.3093.2020.581
  研究论文 本期目录 | 过刊浏览 |
BaTiO3 纳米线的长径比对聚间苯二甲酰间苯二胺复合材料介电性能的影响
段广宇1, 胡静文2, 胡祖明2, 于翔1, 迟长龙1, 李玥1()
1.河南工程学院材料工程学院 郑州 450007
2.东华大学 纤维材料改性国家重点实验室 上海 201620
Influence of BaTiO3 Nanowire Aspect Ratio on Dielectric Property of Poly (Metaphenylene Isophthalamide) Composite
DUAN Guangyu1, HU Jingwen2, HU Zuming2, YU Xiang1, CHI Changlong1, LI Yue1()
1.College of Materials Engineering, Henan University of Engineering, Zhengzhou 450007, China
2.State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
引用本文:

段广宇, 胡静文, 胡祖明, 于翔, 迟长龙, 李玥. BaTiO3 纳米线的长径比对聚间苯二甲酰间苯二胺复合材料介电性能的影响[J]. 材料研究学报, 2022, 36(7): 527-535.
Guangyu DUAN, Jingwen HU, Zuming HU, Xiang YU, Changlong CHI, Yue LI. Influence of BaTiO3 Nanowire Aspect Ratio on Dielectric Property of Poly (Metaphenylene Isophthalamide) Composite[J]. Chinese Journal of Materials Research, 2022, 36(7): 527-535.

全文: PDF(13149 KB)   HTML
摘要: 

用水热法合成了不同长径比的钛酸钡纳米线(BaTiO3 nanowires (BTN)),用聚乙烯吡咯烷酮(PVP)调节其表面化学能和静电力(标记为P-BTN)。将P-BTN加入聚间苯二甲酰间苯二胺(PMIA)基体中制备出P-BTN含量(质量分数)为10%的介电复合材料P-BTN/PMIA。研究了合成温度对BTN长径比的影响、P-BTN对P-BTN/PMIA复合材料介电性能和电学性能的影响以及P-BTN/PMIA复合材料在不同温度下的介电性能和电学性能。结果表明:随着BTN合成温度的提高其长径比明显增大,从130℃时的7.2增大到250℃时的46;随着PMIA复合材料中P-BTN长径比的增大其介电常数从6.6增大到9.8,其介电损耗在整个频率范围内小于0.025并保持了良好的绝缘性能;在-20℃-200℃复合材料P-BTN-250-10介电常数和介电损耗保持稳定。高长径比的BTN更利于提高耐高温聚合物基复合材料的介电常数,进而提高其储能密度。

关键词 复合材料钛酸钡纳米线长径比聚间苯二甲酰间苯二胺介电性能    
Abstract

The BaTiO3 nanowires (BTN) with different aspect ratios were synthesized through hydrothermal method, and polyvinylpyrrolidone (PVP) was used to adjust the surface chemical energy and electrostatic force of BTN (named as P-BTN). Subsequently, P-BTN were added into poly(metaphenylene isophthalamide) (PMIA) matrix to prepare PMIA dielectric composites containing 10% P-BTN (mass fraction) with different aspect ratios. The influence of synthesized temperature on aspect ratio of BTN was investigated, and the effect of P-BTN with different aspect ratios on dielectric and electrical properties of PMIA composites as well as dielectric and electrical properties of P-BTN/PMIA composites at different temperatures were also investigated. The results show that with increase of synthetic temperature of BTN precursor, the aspect ratios of synthesized BTN significantly increased from 7.2 (130℃) to 46 (250℃). With increment of the aspect ratio of P-BTN in PMIA composites the dielectric constants of corresponding composites increased from 6.6 to 9.8. At the same time, the dielectric losses of all composites were less than 0.025 in entire frequency range. Furthermore, the prepared composites with different aspect ratios of P-BTN also maintained satisfied insulation performance. The dielectric constant and dielectric loss in the range of -20℃ to 200℃ of P-BTN-250-10 composite maintains stable. This P-BTN/PMIA composites can further increase the energy storage density.

Key wordscomposite    BaTiO3 nanowires    aspect ratio    poly(metaphenylene isophthalamide)    dielectric property
收稿日期: 2021-09-05     
ZTFLH:  TB332  
基金资助:国家自然科学基金(51608175);河南省高校科技创新人才计划(20HASTIT016);河南省科技攻关项目(202102310605)
作者简介: 段广宇,男,1991年生,博士
图1  聚间苯二甲线间苯二胺(PMIA)的结构式
图2  制备P-BTN/PMIA复合材料的示意图
图3  BTN的SEM照片和P-BTN-250-10的横截面形貌
图4  在不同温度制备的BTN的长度分布和直径分布及其长径比与合成温度的关系
图5  BT的XRD谱、BTN-190的XRD谱、FTIR谱和XPS谱以及P-BTN-190的FTIR谱和XPS谱
图6  P-BTN含量为10%的PMIA复合材料的介电常数、介电损耗和电导率
图7  不同频率下P-BTN-250-10介电常数、介电损耗和电导率随温度的变化
1 Shen Y, Zhang X, Li M, et al. Polymer nanocomposite dielectrics for electrical energy storage [J]. Natl. Sci. Rev., 2017, 4: 23
doi: 10.1093/nsr/nww066
2 Prateek, Vijay K T, Raju K G. Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects [J]. Chem. Rev., 2016, 116: 4260
doi: 10.1021/acs.chemrev.5b00495 pmid: 27040315
3 Hu H L, Zhang F, Luo S B, et al. Recent advances in rational design of polymer nanocomposite dielectrics for energy storage [J]. Nano Energy, 2020, 74: 104844
doi: 10.1016/j.nanoen.2020.104844
4 Li Q, Yao F Z, Liu Y, et al. High-temperature dielectric materials for electrical energy storage [J]. Annu. Rev. Mater. Sci., 2018, 48: 219
doi: 10.1146/annurev-matsci-070317-124435
5 Janet S H, Steven G G. Polymer capacitor dielectrics for high temperature applications [J]. ACS Appl. Mater. Interfaces 2018, 10: 29189
6 Li H, Liu F H, Fan B, et al. Nanostructured ferroelectric-polymer composites for capacitive energy storage [J]. Small Methods, 2018, 6: 1700399
7 Zhu X T, Yang J, Davoud D, et al. Fabrication of core-shell structured Ni@BaTiO3 scaffolds for polymer composites with ultrahigh dielectric constant and low loss [J]. Compos. Part A: Appl. Sci. Manufac., 2019, 125: 105521
doi: 10.1016/j.compositesa.2019.105521
8 Liu S H, Zhai J W. Improving the dielectric constant and energy density of poly(vinylidene fluoride) composites induced by surface-modified SrTiO3 nanofibers by polyvinylpyrrolidone [J]. J. Mater. Chem. C, 2015, 3: 1511
9 He D L, Wang Y, Chen X Q, et al. Core-shell structured BaTiO3@Al2O3 nanoparticles in polymer composites for dielectric loss suppression and breakdown strength enhancement [J]. Compos. Part A: Appl. Sci. Manufac., 2017, 93: 137
doi: 10.1016/j.compositesa.2016.11.025
10 Wang J, Liu S H, Wang J Y, et al. Improving dielectric properties and energy storage performance of poly(vinylidene fluoride) nanocomposite by surface-modified SrTiO3 nanoparticles [J]. J. Alloy. Compd., 2017, 726: 587
doi: 10.1016/j.jallcom.2017.07.341
11 Feng Y L, Li W F, Hou Y, et al. Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape [J]. J. Mater. Chem. C, 2015, 3: 1250
doi: 10.1039/C4TC02183E
12 Huang X Y, Sun B, Zhu Y K, et al. High-k polymer nanocomposites with 1D filler for dielectric and energy storage applications [J]. Prog. Mater. Sci., 2019, 100: 187
doi: 10.1016/j.pmatsci.2018.10.003
13 Duan G Y, Wang Y, Yu J R, et al. Preparation of PMIA dielectric nanocomposite with enhanced thermal conductivity by filling with functionalized graphene-carbon nanotube hybrid fillers [J]. Appl. Nanosci., 2019, 9: 1743
doi: 10.1007/s13204-019-00955-0
14 Tang H, Zhou Z, Sodano H A. Relationship between BaTiO3 nanowire aspect ratio and the dielectric permittivity of nanocomposites [J]. ACS Appl. Mater. Interfaces, 2014, 6: 5450
doi: 10.1021/am405038r
15 Duan G Y, Cao Y, Quan J Y, et al. Bioinspired construction of BN@polydopamine@Al2O3 fillers for preparation of a polyimide dielectric composite with enhanced thermal conductivity and breakdown strength [J]. Journal of Materials Science, 2020, 55: 8170
doi: 10.1007/s10853-020-04596-5
16 Jin Y, Xia N, Gerhardt R A. Enhanced dielectric properties of polymer matrix composites with BaTiO3 and MWCNT hybrid fillers using simple phase separation [J]. Nano Energy, 2016, 30: 407
doi: 10.1016/j.nanoen.2016.10.033
17 Luo S B, Shen Y B, Yu S H, et al. Construction of a 3D-BaTiO3 network leading to significantly enhanced dielectric permittivity and energy storage density of polymer composites [J]. Energy Environ. Sci., 2017, 10: 137
doi: 10.1039/C6EE03190K
18 Wu J, Qin N, Bao D H, et al. Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration [J]. Nano Energy, 2018, 45: 44
doi: 10.1016/j.nanoen.2017.12.034
19 Hu P H, Sun W, D, Fan M Z, et al. Large energy density at high-temperature and excellent thermal stability in polyimide nanocomposite contained with small loading of BaTiO3 nanofibers [J]. Appl. Surf. Sci., 2018, 458: 743
doi: 10.1016/j.apsusc.2018.07.128
20 Nagao M, Kimura T, Mizuno Y, et al. Detection of Joule Heating before Dielectric Breakdown in Polyethylene[J]. IEEE T. Dielect. El. In., 1990, 25: 715
21 Wang Z D, Yang M M, Cheng Y H, et al. Dielectric properties and thermal conductivity of epoxy composites using quantum-sized silver decorated core/shell structured alumina/polydopamine [J]. Compos. Part A: Appl. Sci. Manufac., 2019, 118: 302
doi: 10.1016/j.compositesa.2018.12.022
22 Chanmal V C. Dielectric relaxations in PVDF/BaTiO3 nanocomposites [J]. Express Polym. Lett., 2008, 2: 294
doi: 10.3144/expresspolymlett.2008.35
23 Pan Z B, Yao L M, Zhai J W, et al. Interfacial Coupling Effect in Organic/Inorganic Nanocomposites with High Energy Density [J]. Adv. Mater., 2018, 30: 1705662
doi: 10.1002/adma.201705662
24 Luo H, Wu Z, Zhou X F, et al. Enhanced performance of P(VDF-HFP) composites using two-dimensional BaTiO3 platelets and graphene hybrids [J]. Compos. Sci. Technol., 2018, 160: 237
doi: 10.1016/j.compscitech.2018.03.034
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.