Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (7): 536-544    DOI: 10.11901/1005.3093.2021.421
  研究论文 本期目录 | 过刊浏览 |
碳纤维/铝复层材料的组织和力学性能
王艳坤1, 王宇1(), 纪伟2, 王智慧2, 彭翔飞1, 呼宇雄1, 刘斌1, 徐宏1, 白培康1
1.中北大学材料科学与工程学院 太原 030000
2.内蒙古金属材料研究所 烟台 264000
Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites
WANG Yankun1, WANG Yu1(), JI Wei2, WANG Zhihui2, PENG Xiangfei1, HU Yuxiong1, LIU Bin1, XU Hong1, BAI Peikang1
1.School of materials science and engineering, North University of China, Taiyuan 030000, China
2.Inner Mongolia Metal Material Research Institute, Yantai 264000, China
引用本文:

王艳坤, 王宇, 纪伟, 王智慧, 彭翔飞, 呼宇雄, 刘斌, 徐宏, 白培康. 碳纤维/铝复层材料的组织和力学性能[J]. 材料研究学报, 2022, 36(7): 536-544.
Yankun WANG, Yu WANG, Wei JI, Zhihui WANG, Xiangfei PENG, Yuxiong HU, Bin LIU, Hong XU, Peikang BAI. Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. Chinese Journal of Materials Research, 2022, 36(7): 536-544.

全文: PDF(18906 KB)   HTML
摘要: 

在1060系铝基体表面镀镍碳纤维作为增强体,进行真空热压扩散制备出碳纤维/铝复层材料。研究了制备工艺参数(加热温度、保温时间、压力大小)和碳纤维体积分数对碳纤维/铝复层材料的微观组织、界面结合、性能强度和断口形貌的影响。结果表明:碳纤维与铝基体界面结合良好,镀镍层与铝基体在碳纤维附近反应生成的Al3Ni阻止了铝基体与碳纤维之间生成脆性相Al4C。随着碳纤维体积分数的提高,材料的抗弯强度先提高后降低。

关键词 复合材料碳纤维/铝复层材料三点弯曲制备工艺界面微观结构    
Abstract

Carbon fibre-reinforced aluminium laminates was prepared by vacuum hot pressing diffusion with 1060 series aluminum as matrix and nickel plated carbon fiber as reinforcement in this paper. The effects of preparation parameters (heating temperature, holding time, pressure) and carbon fiber volume fraction on the microstructure, interfacial bonding, mechanical strength and fracture morphology of Carbon fibre-reinforced aluminium laminates were investigated. The results show that the interface between carbon fiber and aluminum matrix is well bonded, and the nickel coating and aluminum matrix react near the carbon fiber to form Al3Ni, which effectively prevents the formation of brittle phase Al4C between aluminum matrix and carbon fiber. With the increase of carbon fiber volume fraction, the bending strength first increases and then decreases.

Key wordscomposites    carbon fiber/aluminum laminated composites    three point bending    fabrication process    interface microstructure
收稿日期: 2021-07-26     
ZTFLH:  TB333  
基金资助:山西省面上青年基金(201801D221148);山西省高等学校科技创新项目(2020L0319);国防科工局稳定支持经费专项-兵器五五所开放创新项目(JB11-12);安徽省重点研究与开发计划(202004A05020070);山西省重点研发计划国际科技合作项目(201903D421080)
作者简介: 王艳坤,男,1996年生,硕士
ElementSiFeCuMgMnZnTiVAl
Content0.250.350.050.030.030.050.030.0599.16
表1  1060铝的成分(质量分数,%)
Monofilament diameter/μmDensity/g·cm-3Tensile strength/GPaElastic modulus/GPaElongation/%
71.794.412351.9
表2  碳纤维的性能(质量分数,%)
ElementSiFeCuMnSCNi
Content0.250.290.140.230.010.0699.02
表3  N02201镍的成分
图1  镀镍碳纤维的SEM照片[21]和碳纤维毡
Sample numberThickness of Al foil/mmNumber of carbon fiber layersHot pressing temperature/℃Hot pressing time/minPressure /MPa
1-10.146157021
1-20.1463010021
1-30.146507028
2-10.2463010021
2-20.2463015021
2-30.2463020021
3-10.336307021
3-20.3363010021
3-30.336507028
表4  碳纤维增强铝基复合材料的制备工艺参数
图2  碳纤维/铝复层材料试样的宏观照片
图3  碳纤维/铝复层材料试样的微观组织
图4  碳纤维/铝复层材料试样的微观组织
图5  碳纤维/铝复层材料试样的EDS谱
图6  碳纤维/铝复层材料试样的EDS谱
Atomic numberQuality/%Normalized mass/%Atom/%
Al1360.9260.9277.23
Ni2839.0839.0822.77
100100100
表5  EDS测量成分数据表
Atomic numberQuality/%Normalized mass/%Atom/%
Al13707083.67
Ni2821.5621.5610.25
Fe268.468.466.08
100100100
表6  EDS测量成分数据表
图7  碳纤维/铝复层材料试样的XRD谱
图8  烧结试样的密度
图9  烧结试样的三点抗弯结果
图10  630℃、100 min、21 MPa下不同纤维含量试样的三点抗弯图
图11  碳纤维/铝复层材料试样的断口形貌图谱(a)、(b) 0.2 mm Al、4层纤维 (c)、(d) 0.1 mm Al、4层纤维
1 Vogelesang L, Vlot A. Development of fibre metal laminates for advanced aerospace structures [J]. Journal of Materials Processing Technology, 2000, 103(1): 1
doi: 10.1016/S0924-0136(00)00411-8
2 Sinmazçelik T, Avcu E, Bora M O, et al. A review: fibre metal laminates, background, bonding types and applied test methods [J]. Materials & Design, 2011, 32(7): 3671
doi: 10.1016/j.matdes.2011.03.011
3 Moriniere F D, AlderliestenR C, Sadighi M, et al. An intergrated study on the low-velocity impact response of the GLARE fiber-metal laminate [J]. Composite Structures, 2013, 100(6): 89
doi: 10.1016/j.compstruct.2012.12.016
4 Kaboglu C, Mohagheghian I, Zhou J, et al. High-velocity impact deformation and perforation of fibre metal laminates [J]. Journal of Materials Science, 2018, 53(6): 4209
doi: 10.1007/s10853-017-1871-2
5 Cortes P, Cantell W J. The tensile and fatigue properties of carbon fiber-reinforced PEEK-titanium fiber-metal laminates [J]. Journal of Reinforced Plastics & Composites, 2004, 23(15): 1615
6 Yu G C, Wu L J, Ma L, et al. Low velocity impact of carbon fiber aluminium laminates [J]. Composite Structures, 2015, 119: 757
doi: 10.1016/j.compstruct.2014.09.054
7 Dhaliwal G S, Newaz G M. Compression after impact characteristics of carbon fiber reinforced aluminum laminates [J]. Composite Structures, 2017, 160: 1212
doi: 10.1016/j.compstruct.2016.11.015
8 Xue J, Wang W X, Zhang J Z, et al. Progressive failure analysis of the fiber metal laminates based on chopped carbon fiber strands [J]. Journal of Reinforced Plastics & Composites, 2015, 34: 364
9 Lin Y, Huang Y X, Huang T, et al. Open-hole tensile behavior and failure prediction of carbon fibre reinforced aluminium laminates [J]. Polymer Composites, 2018, 39(11): 4123
doi: 10.1002/pc.24477
10 Jiang H Y, Ren Y R, Xiang J W. A numerical study on the energy-absorption of fibre metal laminate conical frusta under quasi-static compression loading [J]. Thin-Walled Structures, 2018, 124: 278
doi: 10.1016/j.tws.2017.12.020
11 Banat D, Mania R J. Progressive failure analysis of thin-walled fibre metal laminate columns subjected to axial compression [J]. Thin-Walled Structures, 2018, 122: 52
doi: 10.1016/j.tws.2017.09.034
12 Bieniaś J, Jakubczak P, Surowska B, et al. Low-energy impact behaviour and damage characterization of carbon fibre reinforced polymer and aluminum hybrid laminates [J]. Archives of Civil and Mechanical Engineering, 2015, 15(4): 925
doi: 10.1016/j.acme.2014.09.007
13 Richardson M O W, Wisheart M J. Review of low-velocity impact properties of composite materials [J]. Composites Part A: Applied Science and Manufacturing, 1996, 27(12): 1123
doi: 10.1016/1359-835X(96)00074-7
14 Li H G, Xu Y W, Hua H G, et al. Bending failure mechanism and flexural properties of GLARE laminates with different stacking sequences [J]. Composite Structures, 2018, 187: 354
doi: 10.1016/j.compstruct.2017.12.068
15 Sadighi M, Dariushi S. Effect of fiber orientation and stacking sequence on bending properties of fiber/metal laminates [C]// Asme International Mechanical Engineering Congress & Exposition. 2008
16 Liu C, Du D D, Li H G, et al. Interlaminar failure behavior of GLARE laminates under short-beam three-point bending load [J]. Composites Part B Engineering, 2016, 97: 361
doi: 10.1016/j.compositesb.2016.05.003
17 Ostapiuk M, Surowska B, Bienias J, et al. Structure characteristics in glass/aluminium hybrid laminates after bending strength test [J]. Polskie Towarzystwo Materiaów Kompozytowych, 2013, 3: 237
18 Dhaliwal G S, Newaz G M. Experimental and numerical investigation of flexural behaviour of carbon fiber reinforced aluminium laminates [J]. Journal of Reinforced Plastics & Composites, 2016: 32
19 Nurhaniza M, Ariffin M K A M, Mustapha F, et al. Flexural analysis of aluminium/carbon-epoxy fiber metal laminates [J]. Australian Journal of Basic and Applied Sciences, 2015, 9(19): 35
20 Osapiuk M, Bienias J, Surowska B. Analysis of the bending and failure of fiber metal laminates based on glass and carbon fibers [J]. Science & Engineering of Composite Materials, 2018, 25(6): 1095
21 Zhang J J. Fabrication of woven carbon fibers reinforced Al-matrix composites and analysis of the corresponding infiltration mechanism [D]. Dalian University of Technology, 2018
21 张峻嘉. 碳纤维编织布增强铝基复合材料的制备及其渗浸机制研究 [D]. 大连理工大学, 2018
22 Tavoosi M. Fabrication and thermal characterization of amorphous and nanocrystalline Al9FeNi/Al3Ti compound [J]. Materials Chemistry & Physics, 2017, 186(15): 14
23 Lin C, Kao P. Fatigue delamination growth in carbon fibre-reinforced aluminium laminates [J]. Composites Part A Applied Science & Manufacturing, 1996, 27(1): 9
24 Lin C, Kao P. Delamination growth and its effect on crack propagation in carbon fiber reinforced aluminum laminates under fatigue loading [J]. Acta Materialia, 1996, 44(3): 1181
doi: 10.1016/1359-6454(95)00182-4
25 Lin C, Kao P. Effect of fiber bridging on the fatigue crack propagation in carbon fiber-reinforced aluminum laminates [J]. Materials Science & Engineering A, 1995, 190(1-2): 65
26 Pippel E, et al. Interlayer structure of carbon fibre reinforced aluminium wires [J]. Journal of Materials Science, 2000, 35(9): 2279
doi: 10.1023/A:1004787112162
27 Yang J, Pickard S M, Cady C, et al. The stress/strain behavior of aluminum matrix composites with discontinuous reinforcements [J]. Acta Metallurgica Et Materialia, 1991, 39(8): 1863
doi: 10.1016/0956-7151(91)90155-T
28 Arsenault R J, Shi N. Dislocation generation due to differences between the coefficients of thermal expansion [J]. Materials Science and Engineering, 1986, 81(1-2): 175
doi: 10.1016/0025-5416(86)90261-2
29 Liu Y, Wang H. Preparation and performance of continuous carbon-fiber reinforced aluminum matrix composites [J]. Foundry Technology, 2018, 39(6): 1202
29 刘 艺, 王 华. 连续碳纤维增强铝基复合材料的制备与性能研究 [J]. 铸造技术, 2018, 39(6): 1202
30 Wang M, Qu Y D, Li G L, et al. Microstructure and properties of short nickel coated carbon fibers reinforced aluminum matrix composites [J]. Special Casting and Nonferrous Alloy, 2017, 37(10): 1117
30 王 敏, 曲迎东, 李广龙 等. 镀镍短碳纤维增强铝基复合材料的组织及性能 [J]. 特种铸造及有色合金, 2017, 37(10): 1117
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.