|
|
碳纤维/铝复层材料的组织和力学性能 |
王艳坤1, 王宇1( ), 纪伟2, 王智慧2, 彭翔飞1, 呼宇雄1, 刘斌1, 徐宏1, 白培康1 |
1.中北大学材料科学与工程学院 太原 030000 2.内蒙古金属材料研究所 烟台 264000 |
|
Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites |
WANG Yankun1, WANG Yu1( ), JI Wei2, WANG Zhihui2, PENG Xiangfei1, HU Yuxiong1, LIU Bin1, XU Hong1, BAI Peikang1 |
1.School of materials science and engineering, North University of China, Taiyuan 030000, China 2.Inner Mongolia Metal Material Research Institute, Yantai 264000, China |
引用本文:
王艳坤, 王宇, 纪伟, 王智慧, 彭翔飞, 呼宇雄, 刘斌, 徐宏, 白培康. 碳纤维/铝复层材料的组织和力学性能[J]. 材料研究学报, 2022, 36(7): 536-544.
Yankun WANG,
Yu WANG,
Wei JI,
Zhihui WANG,
Xiangfei PENG,
Yuxiong HU,
Bin LIU,
Hong XU,
Peikang BAI.
Microstructure and Mechanical Properties of Carbon Fiber/Aluminum Laminated Composites[J]. Chinese Journal of Materials Research, 2022, 36(7): 536-544.
1 |
Vogelesang L, Vlot A. Development of fibre metal laminates for advanced aerospace structures [J]. Journal of Materials Processing Technology, 2000, 103(1): 1
doi: 10.1016/S0924-0136(00)00411-8
|
2 |
Sinmazçelik T, Avcu E, Bora M O, et al. A review: fibre metal laminates, background, bonding types and applied test methods [J]. Materials & Design, 2011, 32(7): 3671
doi: 10.1016/j.matdes.2011.03.011
|
3 |
Moriniere F D, AlderliestenR C, Sadighi M, et al. An intergrated study on the low-velocity impact response of the GLARE fiber-metal laminate [J]. Composite Structures, 2013, 100(6): 89
doi: 10.1016/j.compstruct.2012.12.016
|
4 |
Kaboglu C, Mohagheghian I, Zhou J, et al. High-velocity impact deformation and perforation of fibre metal laminates [J]. Journal of Materials Science, 2018, 53(6): 4209
doi: 10.1007/s10853-017-1871-2
|
5 |
Cortes P, Cantell W J. The tensile and fatigue properties of carbon fiber-reinforced PEEK-titanium fiber-metal laminates [J]. Journal of Reinforced Plastics & Composites, 2004, 23(15): 1615
|
6 |
Yu G C, Wu L J, Ma L, et al. Low velocity impact of carbon fiber aluminium laminates [J]. Composite Structures, 2015, 119: 757
doi: 10.1016/j.compstruct.2014.09.054
|
7 |
Dhaliwal G S, Newaz G M. Compression after impact characteristics of carbon fiber reinforced aluminum laminates [J]. Composite Structures, 2017, 160: 1212
doi: 10.1016/j.compstruct.2016.11.015
|
8 |
Xue J, Wang W X, Zhang J Z, et al. Progressive failure analysis of the fiber metal laminates based on chopped carbon fiber strands [J]. Journal of Reinforced Plastics & Composites, 2015, 34: 364
|
9 |
Lin Y, Huang Y X, Huang T, et al. Open-hole tensile behavior and failure prediction of carbon fibre reinforced aluminium laminates [J]. Polymer Composites, 2018, 39(11): 4123
doi: 10.1002/pc.24477
|
10 |
Jiang H Y, Ren Y R, Xiang J W. A numerical study on the energy-absorption of fibre metal laminate conical frusta under quasi-static compression loading [J]. Thin-Walled Structures, 2018, 124: 278
doi: 10.1016/j.tws.2017.12.020
|
11 |
Banat D, Mania R J. Progressive failure analysis of thin-walled fibre metal laminate columns subjected to axial compression [J]. Thin-Walled Structures, 2018, 122: 52
doi: 10.1016/j.tws.2017.09.034
|
12 |
Bieniaś J, Jakubczak P, Surowska B, et al. Low-energy impact behaviour and damage characterization of carbon fibre reinforced polymer and aluminum hybrid laminates [J]. Archives of Civil and Mechanical Engineering, 2015, 15(4): 925
doi: 10.1016/j.acme.2014.09.007
|
13 |
Richardson M O W, Wisheart M J. Review of low-velocity impact properties of composite materials [J]. Composites Part A: Applied Science and Manufacturing, 1996, 27(12): 1123
doi: 10.1016/1359-835X(96)00074-7
|
14 |
Li H G, Xu Y W, Hua H G, et al. Bending failure mechanism and flexural properties of GLARE laminates with different stacking sequences [J]. Composite Structures, 2018, 187: 354
doi: 10.1016/j.compstruct.2017.12.068
|
15 |
Sadighi M, Dariushi S. Effect of fiber orientation and stacking sequence on bending properties of fiber/metal laminates [C]// Asme International Mechanical Engineering Congress & Exposition. 2008
|
16 |
Liu C, Du D D, Li H G, et al. Interlaminar failure behavior of GLARE laminates under short-beam three-point bending load [J]. Composites Part B Engineering, 2016, 97: 361
doi: 10.1016/j.compositesb.2016.05.003
|
17 |
Ostapiuk M, Surowska B, Bienias J, et al. Structure characteristics in glass/aluminium hybrid laminates after bending strength test [J]. Polskie Towarzystwo Materiaów Kompozytowych, 2013, 3: 237
|
18 |
Dhaliwal G S, Newaz G M. Experimental and numerical investigation of flexural behaviour of carbon fiber reinforced aluminium laminates [J]. Journal of Reinforced Plastics & Composites, 2016: 32
|
19 |
Nurhaniza M, Ariffin M K A M, Mustapha F, et al. Flexural analysis of aluminium/carbon-epoxy fiber metal laminates [J]. Australian Journal of Basic and Applied Sciences, 2015, 9(19): 35
|
20 |
Osapiuk M, Bienias J, Surowska B. Analysis of the bending and failure of fiber metal laminates based on glass and carbon fibers [J]. Science & Engineering of Composite Materials, 2018, 25(6): 1095
|
21 |
Zhang J J. Fabrication of woven carbon fibers reinforced Al-matrix composites and analysis of the corresponding infiltration mechanism [D]. Dalian University of Technology, 2018
|
21 |
张峻嘉. 碳纤维编织布增强铝基复合材料的制备及其渗浸机制研究 [D]. 大连理工大学, 2018
|
22 |
Tavoosi M. Fabrication and thermal characterization of amorphous and nanocrystalline Al9FeNi/Al3Ti compound [J]. Materials Chemistry & Physics, 2017, 186(15): 14
|
23 |
Lin C, Kao P. Fatigue delamination growth in carbon fibre-reinforced aluminium laminates [J]. Composites Part A Applied Science & Manufacturing, 1996, 27(1): 9
|
24 |
Lin C, Kao P. Delamination growth and its effect on crack propagation in carbon fiber reinforced aluminum laminates under fatigue loading [J]. Acta Materialia, 1996, 44(3): 1181
doi: 10.1016/1359-6454(95)00182-4
|
25 |
Lin C, Kao P. Effect of fiber bridging on the fatigue crack propagation in carbon fiber-reinforced aluminum laminates [J]. Materials Science & Engineering A, 1995, 190(1-2): 65
|
26 |
Pippel E, et al. Interlayer structure of carbon fibre reinforced aluminium wires [J]. Journal of Materials Science, 2000, 35(9): 2279
doi: 10.1023/A:1004787112162
|
27 |
Yang J, Pickard S M, Cady C, et al. The stress/strain behavior of aluminum matrix composites with discontinuous reinforcements [J]. Acta Metallurgica Et Materialia, 1991, 39(8): 1863
doi: 10.1016/0956-7151(91)90155-T
|
28 |
Arsenault R J, Shi N. Dislocation generation due to differences between the coefficients of thermal expansion [J]. Materials Science and Engineering, 1986, 81(1-2): 175
doi: 10.1016/0025-5416(86)90261-2
|
29 |
Liu Y, Wang H. Preparation and performance of continuous carbon-fiber reinforced aluminum matrix composites [J]. Foundry Technology, 2018, 39(6): 1202
|
29 |
刘 艺, 王 华. 连续碳纤维增强铝基复合材料的制备与性能研究 [J]. 铸造技术, 2018, 39(6): 1202
|
30 |
Wang M, Qu Y D, Li G L, et al. Microstructure and properties of short nickel coated carbon fibers reinforced aluminum matrix composites [J]. Special Casting and Nonferrous Alloy, 2017, 37(10): 1117
|
30 |
王 敏, 曲迎东, 李广龙 等. 镀镍短碳纤维增强铝基复合材料的组织及性能 [J]. 特种铸造及有色合金, 2017, 37(10): 1117
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|