Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (6): 443-453    DOI: 10.11901/1005.3093.2022.062
  研究论文 本期目录 | 过刊浏览 |
真空分级淬火对8Cr4Mo4V钢组织和性能的影响
于兴福1(), 王盛宇2, 王宇蓬3, 杨树新3, 杨宇4, 苏勇5, 冯小川3
1.沈阳工业大学机械工程学院 沈阳 110870
2.沈阳工业大学材料科学与工程学院 沈阳 110870
3.中国航发哈尔滨轴承有限公司 哈尔滨 150000
4.中国航空发动机集团航空发动机动力传输重点实验室 沈阳 110015
5.沈阳化工大学机械与动力工程学院 沈阳 110142
Effect of Vacuum Graded Quenching on Microstructure and Mechanical Properties of 8Cr4Mo4V Steel
YU Xingfu1(), WANG Shengyu2, WANG Yupeng3, YANG Shuxin3, YANG Yu4, SU Yong5, FENG Xiaochuan3
1.School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China
2.School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
3.AECC Harbin Bearing Co. Ltd., Harbin 150000, China
4.Key Laboratory of Power Transmission Technology on Aero-Engine, Aero Engine Corporation of China, Shenyang 110015, China
5.School of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
引用本文:

于兴福, 王盛宇, 王宇蓬, 杨树新, 杨宇, 苏勇, 冯小川. 真空分级淬火对8Cr4Mo4V钢组织和性能的影响[J]. 材料研究学报, 2022, 36(6): 443-453.
Xingfu YU, Shengyu WANG, Yupeng WANG, Shuxin YANG, Yu YANG, Yong SU, Xiaochuan FENG. Effect of Vacuum Graded Quenching on Microstructure and Mechanical Properties of 8Cr4Mo4V Steel[J]. Chinese Journal of Materials Research, 2022, 36(6): 443-453.

全文: PDF(18971 KB)   HTML
摘要: 

在真空条件下对航空轴承用8Cr4Mo4V钢进行不同温度的分级淬火并采用扫描电镜观察其微观组织、用XRD谱进行相分析并测试洛氏硬度、冲击性能和旋转弯曲疲劳性能,研究了真空分级淬火对其微观组织和力学性能的影响。结果表明,真空分级淬火后的8Cr4Mo4V钢其微观组织由下贝氏体、马氏体/残余奥氏体和碳化物组成;随着分级淬火温度的提高,淬火和回火态钢中析出碳化物的数量增加,残余奥氏体的含量降低。分级淬火温度为580℃时淬火态钢中贝氏体的含量最高(达到13.87%),残余奥氏体的含量为28.59%。回火后析出碳化物的含量和洛氏硬度均为所有分级温度中的最大值,分别为4.37%和62.38HRC。真空分级淬火能提高8Cr4Mo4V钢的综合力学性能。与未分级真空淬火相比,进行580℃×10 min真空分级淬火的8Cr4Mo4V钢的冲击韧性提高了23.3%,旋转弯曲疲劳极限提高了110 MPa。

关键词 金属材料8Cr4Mo4V钢真空分级淬火贝氏体力学性能    
Abstract

The 8Cr4Mo4V steel for aviation bearing manufacturing was subjected to graded quenching at different temperatures after being vacuum heat-treated. The effect of vacuum graded quenching on microstructure and mechanical properties of 8Cr4Mo4V steel were investigated by scanning electron microscope, XRD, Rockwell hardness tester, impact tester and rotational bending fatigue tester. Results show that the graded quenching 8Cr4Mo4V steel presents a microstructure of lower bainite, martensite/retained austenite and carbides. With the increase of graded quenching temperature, the number of precipitated carbides in the quenched and tempered steel increases, while the amount of retained austenite decreases. When the graded quenching temperature is 580℃, the bainite volume fraction of the quenched steel reaches a maximum of 13.87%, and the residual austenite volume fraction is 28.59%, and then after tempering, the precipitated carbides volume fraction and the Rockwell hardness reach the maximum namely 4.37% and 62.38 HRC respectively, in comparison to other desired graded quenching temperatures. The vacuum graded quenching can improve the comprehensive mechanical properties of 8Cr4Mo4V steel. In other word, the 580℃×10 min vacuum graded quenching treated 8Cr4Mo4V steel presents impact toughness and fatigue limit of rotational bending 23.3% and 110 MPa respectively higher than those of the traditional vacuum quenching treated ones.

Key wordsmetallic materials    8Cr4Mo4V steel    vacuum graded quenching    bainite    mechanical properties
收稿日期: 2022-01-18     
ZTFLH:  TG142.1  
基金资助:辽宁省教育厅基金(LJ2019014)
作者简介: 于兴福,男,1976年生,博士
CCrMoVNiMnSiFe
0.804.024.20.930.050.290.16Bal.
表1  8Cr4Mo4V轴承钢的化学成分
图1  8Cr4Mo4V钢真空分级淬火和回火制度
图2  冲击试样和旋转弯曲疲劳试样的尺寸
图3  8Cr4Mo4V钢真空分级淬火样品的表面温度变化曲线
图4  8Cr4Mo4V钢真空淬火与回火后的微观组织
图5  不同温度真空分级淬火后8Cr4Mo4V钢的微观组织
图6  600℃×10 min真空分级淬火后8Cr4Mo4V钢中碳化物的形貌
CarbidesCMoVCrFeTypes
A27.334.071.344.1363.14M6C
B32.026.372.124.355.19M6C
C21.736.195.284.6462.17M2C
D47.039.939.494.3129.23MC
表2  600℃×10 min真空分级淬火后8Cr4Mo4V钢中碳化物的类型
图7  在不同温度下真空分级淬火及回火后8Cr4Mo4V钢的微观组织
图8  分级温度不同的8Cr4Mo4V钢中析出碳化物的含量和平均尺寸
图9  分级温度不同的8Cr4Mo4V钢回火后二次碳化物的含量和平均尺寸
图10  经不同真空分级淬火后8Cr4Mo4V钢的XRD谱
图11  8Cr4Mo4V钢中的贝氏体标记
图12  8Cr4Mo4V钢中贝氏体的含量与分级温度的关系
图13  真空分级淬火温度不同的8Cr4Mo4V钢组织变化的示意图
图14  真空分级淬火与回火后8Cr4Mo4V钢的硬度
图15  经不同真空热处理后8Cr4Mo4V钢的冲击断口形貌
图16  经不同真空热处理后8Cr4Mo4V钢的S-N曲线
图17  经不同真空热处理后8Cr4Mo4V钢的旋转弯曲疲劳断口形貌
1 Guetard G, Toda-Caraballo I, Rivera-Diaz-Del-Castillo P E J. Damage evolution around primary carbides under rolling contact fatigue in VIM-VAR M50 [J]. Int. J. Fatigue., 2016, 91(1): 59
doi: 10.1016/j.ijfatigue.2016.05.026
2 Wang F, Qian D S, Hua L, et al. Voids healing and carbide refinement of cold rolled M50 bearing steel by electropulsing treatment [J]. Sci Rep., 2019, 9(1): 13
doi: 10.1038/s41598-018-36788-0
3 Mann G S, Singh L P, Singh G, et al. Comparative performance evaluation of mechanical properties of non-coated and coated carbide inserts under vacuum heat treatment [J]. Mater. Today: Proc., 2018, 5(14): 28229
4 Podgornik B, Pus G, Zuzek B, et al. Heat treatment optimization and properties correlation for H11-type hot-work tool steel [J]. Metall. Mater. Trans. A, 2018, 49(2): 455
5 Zhou L N, Tang G Z, Ma X X, et al. Relationship between microstructure and mechanical properties of M50 ultra-high strength steel via quenching-partitioning-tempering process [J]. Mater. Charact., 2018, 146: 258
doi: 10.1016/j.matchar.2018.10.009
6 Ritchie R O. The conflicts between strength and toughness [J]. Nat. Mater., 2011, 10(11): 817
doi: 10.1038/nmat3115 pmid: 22020005
7 Zhao B Q. Salt bath step quenching process of high speed steel cutting tools [J]. Heat Treat. Tech. Equip., 2017, 38(4): 13
7 赵步青. 高速钢刀具盐浴分级淬火工艺 [J]. 热处理技术与装备, 2017, 38(4): 13
8 Ashrafi H, Shamanian M, Emadi R, et al. Examination of phase transformation kinetics during step quenching of dual phase steels [J]. Mater. Chem. Phys., 2016, 187: 203
doi: 10.1016/j.matchemphys.2016.12.002
9 Hu J J, Hu W, Wu Y Q. Effect of graded quenching specification on microstructure and properties of high speed steel [J]. J. Nanchang Univ., 2004, 26(3): 41
9 胡建军, 胡 文, 吴毅强. 高速钢分级淬火规范对其组织和性能的影响 [J]. 南昌大学学报, 2004, 26(3): 41
10 Li X H, Shi L, Liu Y C, et al. Achieving a desirable combination of mechanical properties in HSLA steel through step quenching [J]. Mater. Sci. Eng. A, 2019, 772: 138683
doi: 10.1016/j.msea.2019.138683
11 Atraszkiewicz R, Januszewicz B, Kaczmarek L, et al. High pressure gas quenching: distortion analysis in gears after heat treatment [J]. Mater. Sci. Eng. A, 2012, 558(15): 550
doi: 10.1016/j.msea.2012.08.047
12 Yang Y, Liu Y Z, LE J, et al. Isothermal heat treatment of a bearing steel for improved mechanical properties [J]. J. Alloys Compd., 2016, 660: 131
doi: 10.1016/j.jallcom.2015.11.051
13 Wang F, Qian D S, Mao H J, et al. Evolution of microstructure and mechanical properties during tempering of M50 steel with bainite/martensite duplex structure [J]. J. Mater. Res. Technol., 2020, 9(3): 6712
doi: 10.1016/j.jmrt.2020.04.075
14 Babu S S, Specht E D, David S A, et al. In-situ observations of lattice parameter fluctuations in austenite and transformation to bainite [J]. Metall. Mater. Trans. A, 2005, 36(12): 3281
15 Edwin Bridge J, Maniar G N, Philip T V. Carbides in M50 high speed steel [J]. Metall. Trans., 1971, 2(8): 2209
16 Chu C, Qin Y, Li X, et al. Effect of two-step austempering process on transformation kinetics of nanostructured bainitic steel [J]. Mater., 2019, 12(1): 166
doi: 10.3390/ma12010166
17 Zhao J, Wang T S, Lv B, et al. Microstructures and mechanical properties of a modified high-C-Cr bearing steel with nano-scaled bainite [J]. Mater. Sci. Eng. A, 2015, 628: 327
doi: 10.1016/j.msea.2014.12.121
18 Hunkel M. Tempering effects of athermal martensite during quen-ching and reheating of a SAE 52100 bearing steel [J]. Mater. Sci. Eng. A, 2020, 790: 139601
doi: 10.1016/j.msea.2020.139601
19 Lu X H, Qian D S, Li W, et al. Enhanced toughness of bearing steel by combining prior cold deformation with martensite pre-quenching and bainite transformation [J]. Mater. Lett., 2019, 234: 5
doi: 10.1016/j.matlet.2018.09.017
20 Zhao K L, Liu Y B, Yu X F, et al. Effect of solid solution- and mesothermal phase transition-treatment on microstructure and mechanical property of ball bearing steel 8Cr4Mo4V [J]. Chin. J. Mater. Res., 2018, 32(3): 200
20 赵开礼, 刘永宝, 于兴福 等. 固溶温度对8Cr4Mo4V轴承钢的中温相转变和力学性能的影响 [J]. 材料研究学报, 2018, 32(3): 200
doi: 10.11901/1005.3093.2017.605
21 Guo J, Yang M S, Lu D H, et al. Rotating bending fatigue life and fatigue crack initiation mechanism of Cr4Mo4V bearing steel [J]. Mater. Eng., 2019, 47(7): 160
21 郭 军, 杨卯生, 卢德宏 等. Cr4Mo4V轴承钢旋转弯曲疲劳寿命及疲劳裂纹萌生机理 [J]. 材料工程, 2019, 47(7): 160
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.