Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (6): 454-460    DOI: 10.11901/1005.3093.2021.142
  研究论文 本期目录 | 过刊浏览 |
界面强度对柔性环氧树脂/粘土纳米复合材料热/力学性能的影响
赵鹏1, 董英杰1, 李响1, 陈斌1(), 张英2()
1.沈阳化工大学材料科学与工程学院 沈阳 110142
2.沈阳化工大学理学院 沈阳 110142
Effect of Interfacial Strength on Thermal/Mechanical Properties of Flexible Epoxy/Clay Nanocomposites
ZHAO Peng1, DONG Yingjie1, LI Xiang1, CHEN Bin1(), ZHANG Ying2()
1.School of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
2.School of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
引用本文:

赵鹏, 董英杰, 李响, 陈斌, 张英. 界面强度对柔性环氧树脂/粘土纳米复合材料热/力学性能的影响[J]. 材料研究学报, 2022, 36(6): 454-460.
Peng ZHAO, Yingjie DONG, Xiang LI, Bin CHEN, Ying ZHANG. Effect of Interfacial Strength on Thermal/Mechanical Properties of Flexible Epoxy/Clay Nanocomposites[J]. Chinese Journal of Materials Research, 2022, 36(6): 454-460.

全文: PDF(2990 KB)   HTML
摘要: 

先合成反应型BBDMP30-clay有机化粘土和非反应型CPDMP30-clay有机化粘土,然后以其为纳米增强体分别制备了两种界面强度不同的环氧树脂/粘土纳米复合材料。用透射电子显微镜(TEM)、拉伸实验表征这两种环氧树脂/粘土纳米复合材料并进行动态力学分析(DMA),研究了界面强度对其力学性能的影响。结果表明:这两种纳米复合材料具有几乎相同的无规剥离结构,反应型BBDMP30-clay比非反应型CPDMP30-clay能更有效地提高材料的热/机械性能。粘土质量分数为3.5%时BBDMP30-clay可使纳米复合材料的拉伸强度提高250%,而CPDMP30-clay只能使材料的拉伸强度提高190%。BBDMP30-clay使纳米复合材料的玻璃化转变温度(Tg)提高了6.5℃,而CPDMP30-clay只能使材料的Tg提高2.5℃。这些不同都可归因于这两种纳米复合材料界面强度的差异。

关键词 复合材料环氧树脂粘土界面强度力学性能    
Abstract

First, two organic clays, manely reactive BBDMP30-clay and non-reactive CPDMP30-clay were synthesized, and then two epoxy resin/clay nanocomposites with different interfacial strength were prepared with the two organic clays as reinforcer respectively. The two epoxy resin/clay nanocomposites were characterized by transmission electron microscopy (TEM) and tensile test with dynamic mechanical analysis (DMA). Further, the effect of interfacial strength on mechanical properties were investigated. The results show that the two nanocomposites have almost the same random peeling structure. The reactive type BBDMP30-clay can improve the thermal/mechanical properties of the composites more effectively than the non-reactive type CPDMP30-clay. When the clay mass fraction is 3.5%, BBDMP30-clay can increase the tensile strength of nanocomposites by 250%, while CPDMP30-clay can only increase the tensile strength of nanocomposites by 190%. BBDMP30-clay increased the glass transition temperature (Tg) of the nanocomposites by 6.5℃, while CPDMP30-clay only increased the Tg by 2.5℃. These differences can be attributed to the difference of the interfacial strength of the two nanocomposites.

Key wordscomposite    epoxy    clay    interface    mechanical properties
收稿日期: 2021-02-15     
ZTFLH:  TQ323.5  
基金资助:辽宁省教育厅2019年度科学研究经费(LJ2019008);辽宁省教育厅2021年度科学研究经费(LJKZ0441)
作者简介: 赵鹏,男,1996生,硕士生
图1  有机修饰剂的合成路线
图2  环氧树脂/粘土纳米复合材料CPDMP30-clay和BBDMP30-clay (粘土质量分数为3.5%)的透射电镜照片
图3  原始粘土和粘土质量分数为3.5%的纳米复合材料的XRD谱
图4  BBDMP30-clay和BBDMP30-clay接枝环氧树脂的TGA曲线
图5  BBDMP30-clay与环氧树脂的反应方程式
图6  环氧树脂/粘土纳米复合材料的应力-应变曲线

Sample

(mass fraction)

Tensile strength/MPaStrain at break/%Modulus/MPa
Neat epoxy6.17±0.0299.33±1.158.59±0.93
1% CPMP30-clay6.94±0.2297.6±3.588.79±0.92
2% CPMP30-clay10.76±0.5294.33±0.3360.15±7.14
3% CPMP30-clay17.28±0.8492.2±7.05193±2.83
3.5% CPMP30-clay18.03±0.3779±2.65210.75±26.47
1% BBDMP30-clay10.66±0.6494.4±2.88133.5±19.09
2% BBDMP30-clay16.62±0.3192.2±4.44209.4±19.62
3% BBDMP30-clay21.05±0.5476.75±3.30397.67±52.08
3.5% BBDMP30-clay21.56±0.6472.8±2.17417.2±26.12
表1  纯环氧树脂和环氧树脂/粘土纳米复合材料的拉伸性能
图7  纯环氧树脂及其纳米复合材料的tanδ与温度的关系
1 Pavlidou S, Papaspyrides C D. A review on polymer-layered silicate nanocomposites [J]. Prog. Polym. Sci., 2008, 33: 1119
doi: 10.1016/j.progpolymsci.2008.07.008
2 Okada A, Usuki A. Twenty years of polymer-clay nanocomposites [J]. Macromol. Mater. Eng., 2006, 291: 1449
doi: 10.1002/mame.200600260
3 Kotal M, Bhowmick A K. Polymer nanocomposites from modified clays: recent advances and challenges [J]. Prog. Polym. Sci., 2015, 51: 127
doi: 10.1016/j.progpolymsci.2015.10.001
4 Usuki A, Kojima Y, Kawasumi M, et al. Synthesis of nylon 6-clay hybrid [J]. J. Mat. Res., 1993, 8: 1179
doi: 10.1557/JMR.1993.1179
5 Manevitch O L, Rutledge G C. Elastic properties of a single Lamella of montmorillonite by molecular dynamics simulation [J]. J. Phys. Chem., 2004, 108B: 1428
6 Lu H J, Liang G Z, Ma X Y, et al. Epoxy/clay nanocomposites: further exfoliation of newly modified clay induced by shearing force of ball milling [J]. Polym. Int., 2004, 53: 1545
doi: 10.1002/pi.1596
7 Chen C G, Tolle T B. Fully exfoliated layered silicate epoxy nanocomposites [J]. J. Polym. Sci., 2004, 42B: 3981
8 Chen B, Liu J, Chen H B, et al. Synthesis of disordered and highly exfoliated epoxy/clay nanocomposites using organoclay with catalytic function via acetone-clay slurry method [J]. Chem. Mater., 2004, 16: 4864
doi: 10.1021/cm048922e
9 Zaman I, Le Q H, Kuan H C, et al. Interface-tuned epoxy/clay nanocomposites [J]. Polymer, 2011, 52: 497
doi: 10.1016/j.polymer.2010.12.007
10 Wei R, Wang X Q, Zhang X, et al. A Novel method for manufacturing high-performance layered silicate/epoxy nanocomposites using an epoxy-diamine adduct to enhance compatibility and interfacial reactivity [J]. Macromol. Mater. Eng., 2018, 303: 1800065
doi: 10.1002/mame.201800065
11 Yang L P, Phua S L, Teo J K H, et al. A biomimetic approach to enhancing interfacial interactions: polydopamine-coated clay as reinforcement for epoxy resin [J]. ACS Appl. Mater. Interfaces, 2011, 3: 3026
doi: 10.1021/am200532j
12 Messersmith P B, Giannelis E P. Synthesis and characterization of layered silicate-epoxy nanocomposites [J]. Chem. Mater., 1994, 6: 1719
doi: 10.1021/cm00046a026
13 Brown J M, Curliss D, Vaia R A. Thermoset-layered silicate nanocomposites. Quaternary ammonium montmorillonite with primary diamine cured epoxies [J]. Chem. Mater., 2000, 12: 3376
doi: 10.1021/cm000477+
14 Chen B, Li J Y, Li X Y, et al. Achieving high thermal and mechanical properties of epoxy nanocomposites via incorporation of dopamine interfaced clay [J]. Polym. Compo., 2018, 39(): E2407
doi: 10.1002/pc.24716
15 Chen B, Pei X P, Xu Y, et al. Effect of reactive organic modifiers on thermal/mechanical properties of epoxy/clay nanocomposites [J]. Chin. J. Mater. Res., 2020, 34(3): 161
15 陈 斌, 裴鑫鹏, 徐 扬 等. 反应型有机修饰剂对环氧树脂/粘土纳米复合材料热/机械性能的影响 [J]. 材料研究学报, 2020, 34(3): 161
16 Wang W S, Chen H S, Wu Y W, et al. Properties of novel epoxy/clay nanocomposites prepared with a reactive phosphorus-containing organoclay [J]. Polymer, 2008, 49: 4826
doi: 10.1016/j.polymer.2008.08.019
17 Lin J J, Cheng I J, Chu C C. High compatibility of the poly(oxypropylene) amine-intercalated montmorillonite for epoxy [J]. Polym. J., 2003, 35: 411
doi: 10.1295/polymj.35.411
18 Li J X, Si C Y, Sun H C, et al. Reversible pH-controlled switching of an artificial antioxidant selenoenzyme based on pseudorotaxane formation and dissociation [J]. Chem. Commun., 2015, 51: 9987
doi: 10.1039/C5CC02038G
19 Zhang Y, Li X G, Chen B, et al. Highly exfoliated epoxy/clay nanocomposites: Mechanism of exfoliation and thermal/mechanical properties [J]. Compo. Struct., 2015, 132: 44
doi: 10.1016/j.compstruct.2015.05.017
20 Lu H B, Nutt S. Restricted relaxation in polymer nanocomposites near the glass transition [J]. Macromolecules, 2003, 36: 4010
doi: 10.1021/ma034049b
21 Zhang X G, Loo L S. Study of glass transition and reinforcement mechanism in polymer/layered silicate nanocomposites [J]. Macromolecules, 2009, 42: 5196
doi: 10.1021/ma9004154
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[6] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[7] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[10] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[13] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[14] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[15] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.