Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (12): 887-892    DOI: 10.11901/1005.3093.2021.268
  研究论文 本期目录 | 过刊浏览 |
一种新型球状纳米氧化铁的制备
郝素菊(), 高一策, 蒋武锋(), 孙天昊, 张玉柱
华北理工大学冶金与能源学院 现代冶金技术教育部重点实验室 唐山 063009
Preparation of a Novel Spherical Nano-sized Iron Oxide
HAO Suju(), GAO Yice, JIANG Wufeng(), SUN Tianhao, ZHANG Yuzhu
School of Metallurgy and Energy, North China University of Science and Technology, Ministry of Education Key Laboratory of Modern Metallurgy Technology, Tangshan 063009, China
引用本文:

郝素菊, 高一策, 蒋武锋, 孙天昊, 张玉柱. 一种新型球状纳米氧化铁的制备[J]. 材料研究学报, 2022, 36(12): 887-892.
Suju HAO, Yice GAO, Wufeng JIANG, Tianhao SUN, Yuzhu ZHANG. Preparation of a Novel Spherical Nano-sized Iron Oxide[J]. Chinese Journal of Materials Research, 2022, 36(12): 887-892.

全文: PDF(10298 KB)   HTML
摘要: 

以Fe(NO3)3·9H2O为原料、以尿素为沉淀剂,用热解前驱体法制备出直径为40~60 nm的球状纳米氧化铁。使用XRD、SEM和EDS等手段对其表征,研究了Fe3+浓度、反应温度等因素对纳米氧化铁的粒径和形貌的影响、确定了球状纳米氧化铁的制备条件并分析了球状纳米氧化铁的形成机理。结果表明:随着Fe(NO3)3·9H2O溶液温度的提高纳米氧化铁的结晶度随之提高、粒径增大。Fe(NO3)3·9H2O的浓度对纳米氧化铁样品的粒度和形貌的影响不大。球状氧化铁纳米的形成机理是:铁源在水热条件下水解和结晶生成棕黄色絮状沉淀FeOOH,FeOOH在高温高压条件下溶解和再结晶生成了球状纳米氧化铁。

关键词 金属材料球状纳米氧化铁热解前驱体法九水硝酸铁    
Abstract

A novel spherical nano-ferric oxide of 40~60 nm in diameter was prepared by pyrolysis precursor method, with Fe (NO3)3·9H2O as raw material and urea as precipitator. The prepared spherical nano-sized ferric oxide was characterized by XRD, SEM and EDS. The effect of Fe3+ concentration, reaction temperature and other factors on the particle size and morphology of nano-sized ferric oxide were investigated. The preparation conditions of nano-sized ferric oxide were determined and the formation mechanism of nano-sized ferric oxide was also analyzed. The results show that the crystallinity and particle size of nano-sized ferric oxide increase with the increase of temperature. The concentration of Fe (NO3)3·9H2O has little effect on the particle size and morphology of the prepared nano-sized iron oxide. The formation mechanism of spherical ferric oxide nanoparticles is as follows: the iron source hydrolysates and crystallizes under hydrothermal conditions to generate brownish yellow flocculant precipitation FeOOH, and FeOOH dissolves and recrystallizes in conditions of high temperature and high pressure further to generate spherical ferric oxide nanoparticles.

Key wordsmetallic materials    spherical nano iron oxide    pyrolysis precursor method    Fe(NO3)3·9H2O
收稿日期: 2021-04-29     
ZTFLH:  TB31  
基金资助:国家自然科学基金(51274084);河北省自然科学基金(E2018209323);河北省自然科学基金(E2022209125)
作者简介: 郝素菊,女,1966年生,教授
图1  纳米氧化铁样品的XRD谱
图2  纳米氧化铁样品的SEM照片
图3  纳米氧化铁样品的EDS分析
图4  在不同反应温度制备的样品XRD谱
图5  在不同反应温度制备的样品的SEM照片
GrainFig.a/nmFig.b/nmFig.c/nmFig.d/nm
143516063
242535859
350555962
440546263
541515865
641526064
740545963
843525865
942516361
1041556364
Average42.3552.1060.0563.00
表1  在不同温度下制备的样品的粒径
图6  在不同反应温度制备的样品的粒径
图7  反应物用量不同的样品的SEM照片
GrainFig.a/nmFig.b/nmFig.c/nmFig.d/nm
153565154
254535350
353555653
455555454
554535756
653565255
754545656
853555256
949525152
1053555555
Average53.254.1553.754
表2  实验中制备的纳米氧化铁的粒径
1 Mahmoudi M, Sant S, Wang B, et al. Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy-science direct [J]. Advanced Drug Delivery Reviews [J]. 2011, 63(1-2): 24
2 Iglesias G, Delgado A V, Kujda M, et al. Magnetic hyperthermia with magnetite nanoparticles: electrostatic and polymeric stabilization [J]. Colloid and Polymer Science, 2016, 294(10): 1541
doi: 10.1007/s00396-016-3918-3
3 Li Y, Wang Y L, Ren L. Recent advances in iron oxide nano-materials for tumor treatment [J]. Chin Sci Bull, 2021, 66: 1195
doi: 10.1360/TB-2020-1297
3 李 瑶, 王云龙, 任 磊. 氧化铁纳米材料在肿瘤治疗中的研究进展 [J]. 科学通报, 2021, 66(10): 1195
4 Espinosa A, Reguera J, Curcio A, et al. Janus magnetic-plasmonic nanoparticles for magnetically guided and thermally activated cancer therapy [J]. Small, 2020, 16(11): 1904960
doi: 10.1002/smll.201904960
5 Nemati Z, Das R, Alonso J, et al. Iron oxide nanospheres and nanocubes for magnetic hyperthermia therapy: A comparative study [J]. Journal of Electronic Materials, 2017
6 Wang J H. Shape-controlled synthesis and application of nano-iron oxides with multiple morphologies [D]. Dalian: Dalian Jiaotong University, 2017
6 王俊皓. 多种形貌纳米铁氧化物的控制合成及应用研究 [D]. 大连: 大连交通大学, 2017
7 Zhu M Y, Chen Q, Dong W J, et al. Preparation and application of Fe3O4 Nanomaterials [J]. Progress In Chemistry, 2017, 29(11): 1366
7 朱脉勇, 陈 齐, 童文杰 等. 四氧化三铁纳米材料的制备与应用 [J]. 化学进展, 2017, 29(11): 1366
doi: 10.7536/PC170559
8 Sun T H, Hao S J, Jiang W F, et al. Preparation and morphology analysis of nano-sized iron oxide [J]. Powder Metallurgy Technology, 2021, 39(01): 76
8 孙天昊, 郝素菊, 蒋武锋 等. 纳米氧化铁的制备及形貌分析 [J]. 粉末冶金技术, 2021, 39(01): 76
9 Du Q B, Yu G, Zhou B J, et al. Preparation and magnetic properties of superparamagnetic iron oxide nanorods [J]. Policy & Scientific Consult (Technology·management), 2021(02): 62
9 杜庆波, 于 冈, 周步军 等. 超顺磁性氧化铁纳米棒的制备及磁性研究 [J]. 科学咨询(科技·管理), 2021(02): 62
10 Li Y S, Church J S, Woodhead A L. Infrared and Raman spectroscopic studies on iron oxide magnetic nano-particles and their surface modifications [J]. Journal of Magnetism & Magnetic Materials, 2012, 324(8): 1543
11 Li F, Liu L, An Y, et al. Hydrothermal liquefaction of three kinds of starches into reducing sugars [J]. J Cleaner Production, 2016, 112: 1049
doi: 10.1016/j.jclepro.2015.08.008
12 Qi L, Hao S, Li Y. Synthesis of various morphological Ca0.75Er0.25-MnO3 powders by hydrothermal method and their electrical properties [J]. Research on Chemical Intermediates, 2017, 43(11): 6589
doi: 10.1007/s11164-017-3006-4
13 Lu X G, Huang L C, Yang L Y, et al. Research progress of preparation methods of nano iron oxide [J]. Applied Chemical Industry, 2017, 46(04): 741
13 鲁秀国, 黄林长, 杨凌焱 等. 纳米氧化铁制备方法的研究进展 [J]. 应用化工, 2017, 46(04): 741
14 Zheng X F. Research progress in preparation of nano-oxides by hydrothermal method [J]. Inorganic Chemicals Industry, 2009, 41(8): 9
14 郑兴芳. 水热法制备纳米氧化物的研究进展 [J]. 无机盐工业, 2009, 41(8): 9
15 Yu G W, Zhang T L, Zhang J G, et al. Preparation and morphology of nano-sized ferric oxide (Fe3O4) [J]. Advances in Chemistry, 2007, 19(6): 884
16 Cheng S X, Li K Z, Qi L H, et al. Synthesis and size control of the Fe3O4 particles synthesized by a reverse coprecipitation method [J]. Chinese Journal of Materials Research, 2011, 25(05): 489
16 程三旭, 李克智, 齐乐华 等. 反向共沉淀法制备纳米Fe3O4及其粒径控制 [J]. 材料研究学报, 2011, 25(05): 489
17 Shao P H. Optimizing synthesis of iron oxide nano-materials for applicatiomferro in photo-fenton degradation of bispheonls under visible light irradiation [D]. Harbin: Harbin Institute of Technology, 2017
17 邵鹏辉. 纳米氧化铁的优化制备及其可见光芬顿降解水中的双酚S [D]. 哈尔滨: 哈尔滨工业大学, 2017
18 Li J, Li H L. Synthesis of α-Fe2O3 nanomaterials and its application in photocatalysis [J]. Journal of Jing De Zhen University, 2015, 30(06): 29
18 李 杰, 李焕莲. α-Fe2O3纳米材料的合成及其在光催化中的应用 [J]. 景德镇学院学报, 2015, 30(06): 29
19 Zhong X. Morphology controll synthesis and gas sensing properties of nano-iron oxide [D]. Jinan: University of Jinan, 2019
19 钟 鑫. 纳米氧化铁的形貌控制合成及气敏性能研究 [D]. 济南: 济南大学, 2019
20 Joseph K, Bailey C, Jeffrey B, et al. Growth mechanisms of iron oxide particles of differing morphologies from the forced hydrolysis of ferric chloride solutions [J]. J. Coll. Interface. Sci., 1993, 157: 1
doi: 10.1006/jcis.1993.1150
21 Pang Z. Solid Chemistry [M]. Beijing: Chemical Industry Press, 2008
21 庞 震. 固体化学 [M]. 北京: 化学工业出版社, 2008
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.