Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (12): 881-886    DOI: 10.11901/1005.3093.2021.605
  研究论文 本期目录 | 过刊浏览 |
磁功能化石墨烯改性环氧树脂及其复合材料的性能
曾强1, 王荣超1, 刘绮1, 彭化南1, 陈平2()
1.上饶师范学院化学与环境科学学院 上饶 334001
2.大连理工大学化工学院 三束材料改性教育部重点实验室 大连 116024
Properties of Epoxy Resin Based Composite Incorporated with Magnetically Functionalized Reduction Graphene Oxide
ZENG Qiang1, WANG Rongchao1, LIU Qi1, PENG Huanan1, CHEN Ping2()
1.School of Chemistry and Environmental Science, Shangrao Normal University, Shangrao 334001, China
2.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education & School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
引用本文:

曾强, 王荣超, 刘绮, 彭化南, 陈平. 磁功能化石墨烯改性环氧树脂及其复合材料的性能[J]. 材料研究学报, 2022, 36(12): 881-886.
Qiang ZENG, Rongchao WANG, Qi LIU, Huanan PENG, Ping CHEN. Properties of Epoxy Resin Based Composite Incorporated with Magnetically Functionalized Reduction Graphene Oxide[J]. Chinese Journal of Materials Research, 2022, 36(12): 881-886.

全文: PDF(2729 KB)   HTML
摘要: 

先以氧化石墨烯和三氯化铁为原料并用高温水热法制备还原氧化石墨烯/ Fe3O4(rGO/Fe3O4)复合物,再用其改性环氧树脂制备出rGO/Fe3O4/环氧树脂复合材料,研究了(rGO/Fe3O4)复合物的添加对其性能的影响。结果表明,(rGO/Fe3O4)复合物的添加量为30%的复合材料其冲击强度达到27 kJ/m2,比纯环氧树脂的冲击强度提高了58.8%。在环氧树脂中添加rGO/Fe3O4复合物,使其吸波性能显著提高。rGO/Fe3O4复合物的添加量为20%的复合材料,其反射率在小于-10 dB的频率范围为7.7~12.3 GHz,有效吸收频宽达4.6 GHz,覆盖了整个X波段。随着石墨烯含量的提高rGO/Fe3O4/环氧树脂复合材料达到最小反射率的位置向低频位置移动,控制rGO和Fe3O4的相对含量可调控这种复合材料的吸波性能。

关键词 复合材料还原氧化石墨烯Fe3O4改性电磁吸波性能    
Abstract

The magnetic functionalized rGO/Fe3O4 was prepared by hydrothermal method with graphene oxide and ferric chloride as raw materials, and subsequently rGO/Fe3O4 particles were blend in epoxy resin to prepared composite rGO/Fe3O4/epoxy resin. The results show that the impact strength of rGO/Fe3O4/epoxy resin composites reaches 27 kJ/m2 when the addition amount of rGO/Fe3O4 is 30%, which is 58.8% higher than that of the plain epoxy resin. In addition, the absorption performance of epoxy resin composite is significantly enhanced after the addition of rGO/Fe3O4. When the addition of rGO/Fe3O4 is 20%, the reflection loss of the rGO/Fe3O4/epoxy resin composite is less than -10 dB in the frequency range of 7.7~12.3 GHz. The effective absorption bandwidth (reflection loss<-10 dB) is up to 4.6 GHz, which covering the whole X-band. With the increase of graphene content, the position of the minimum reflection loss of rGO/Fe3O4/epoxy resin composites moves towards low-frequencies. It follows that by controlling the relative content of rGO and Fe3O4, the absorbing performance of rGO/Fe3O4/epoxy resin composites can be adjusted to the meet the requirements for materials of desired absorbing performance.

Key wordscomposite    reduced graphene oxide    ferric oxide    modification    electromagnetic absorption properties
收稿日期: 2021-10-28     
ZTFLH:  TB332  
基金资助:国家自然科学基金(62065016);江西省教育厅科学技术研究项目(GJJ180886);上饶师范学院校级自选课题(201904);上饶师范学院大学生创新创业训练计划(2019-CX-20);三束材料改性教育部重点实验室基金(KF2004)
作者简介: 曾强,男,1989生,博士
图1  GO和rGO/ Fe3O4复合物的XRD谱
图2  S30样品的 XPS Fe2p 分峰图
图3  rGO/Fe3O4复合物的SEM照片
图4  rGO/Fe3O4/环氧树脂复合材料的冲击强度
图5  S30不同含量复合材料的反射率
S30 content in epoxy resinRLmin/dB

Frequency range/GHz

(RL≤-10 dB)

The bandwidth /GHz

(RL≤-10 dB)

0%-1.4--
10%-22.58.1-12.34.2
20%-28.47.7-12.34.6
30%-31.77.1-11.54.4
40%-25.57.2-10.93.7
表1  S30含量不同的复合材料的吸波性能
图6  添加S0、S10、S30、S50、S70的环氧树脂复合材料的反射率
SamplesThe ratio of Fe to rGORLmin/dBFrequency/GHzFrequency range /GHz(RL≤-10 dB)The bandwidth /GHz(RL≤-10 dB)
S056 : 0-7.910.6--
S1056 : 10-22.110.358.7~12.53.8
S3056 : 30-31.79.27.1~11.54.4
S5056 : 50-17.78.16.5~10.94.4
S7056 : 70-6.74.0--
表2  添加有S0、S10、S30、S50、S70的环氧树脂复合材料吸波性能
1 Zhou W Y, Zhang F, Wang X, et al. Modification of epoxy resin with epoxidized hydroxyl terminated polybutadiene liquid rubber [J]. Modern Plastics Processing and Applications, 2020, 32(5): 4
1 周文英, 张 帆, 汪 旭 等. EHTPB液体橡胶改性环氧树脂研究 [J]. 现代塑料加工应用, 2020, 32(5): 4
2 Jiang T, Guan H L, Chen X R, et al. Effects of liquid polysulfide rubber on dielectric properties of epoxy resin [J]. Journal of Xi'An Jiaotong University 2020, 54(2): 86
2 江 铁, 关弘路, 陈向荣 等. 液态聚硫橡胶对环氧树脂介电性能的影响 [J]. 西安交通大学学报, 2020, 54(2): 86
3 Zhao Y L, Huang R J, Wu Z X, et al. Effect of free volume on cryogenic mechanical properties of epoxy resin reinforced by hyperbranched polymers [J]. Mater. Des., 2021, 202: 109565
doi: 10.1016/j.matdes.2021.109565
4 Yang R, Cao H W, Zhang P L, et al. Highly toughened and heat-resistant poly(lactic acid) with balanced strength using an unsaturated liquid crystalline polyester via dynamic vulcanization [J]. ACS Appl. Poly. Mater., 2021, 3(1): 299
5 Leena K, Temina M R, Dona M, et al. Novel epoxy resin adhesives toughened by functionalized poly (ether ether ketone)s [J]. Inter. J. Adhe. Adhe., 2021, 106: 102816
6 Ke J X, Jing X, Wang H, et al. Effects of hydrolyzed cyclic carbonate toughener on properties of epoxy resin [J]. Polyurethane Industry, 2021, 36 (4): 20
6 柯杰曦, 景 欣, 王洪 等. 水解环状碳酸酯增韧剂对环氧树脂性能的影响[J]. 聚氨酯工业, 2021, 36 (4): 20
7 Katti P, Verma K K, Kumar S, et al. Tuning the interface in epoxy-based composites and laminates through epoxy grafted graphene oxide enhances mechanical properties [J]. Nanoscale Adv., 2021, 3(23): 6739
doi: 10.1039/D1NA00437A
8 Luo X, Pu X L, Ding X M, et al. Low loading of tannic acid-functionalized WS30 nanosheets for robust epoxy nanocomposites [J]. ACS Appl. Nano Mater., 2021, 4(10): 10419
doi: 10.1021/acsanm.1c01938
9 Chen Q Y, Sukmanee T, Rong L H, et al. A dual approach in direct ink writing of thermally cured shape memory rubber toughened epoxy [J]. ACS Appl. Poly. Mater., 2020, 2(12): 5492
10 Su W F, Han X C, Gong J, et al. Toughening epoxy asphalt binder using core-shell rubber nanoparticles [J]. Const. Build. Mater., 2020, 258: 119716
doi: 10.1016/j.conbuildmat.2020.119716
11 Yang J Y, Wang H X, Liu X H, et al. A nano-TiO2/regenerated cellulose biohybrid enables simultaneously improved strength and toughness of solid epoxy resins [J]. Comp. Sci. Tech., 2021, 212: 108884
doi: 10.1016/j.compscitech.2021.108884
12 Yuan Z H, Niu Y P, Wang X W, et al. Study on mechanical property of SiO2-ESBS/EP [J]. New Chemical Materials, 2021, 49(8): 82
12 袁智慧, 牛永平, 汪小伟 等. SiO2-ESBS/环氧树脂复合材料的力学性能研究[J]. 化工新型材料, 2021, 49(8): 82
13 Pang B, Jia Y T, Pang S D, et al. Research on the toughening mechanism of modified nano-silica and silane molecular cages in the multi-scale microfracture of cement-epoxy composite [J]. Ceme. Conc. Comp., 2021, 119: 104027
14 Rui W J. Preparation and performance of liquid crystal polyurethane epoxy resin composites [J]. Chemical Engineering Design Communications, 2020, 46(11): 35
14 芮文娟. 液晶聚氨酯/环氧树脂复合材料的制备与性能 [J]. 化工设计通讯, 2020, 46(11): 35
15 Xu S Q, Cai J, Qin X F, et al. Performance of resin system of E-51 toughened by liquid-crystalline epoxy resin [J]. Packaging Engineering, 2016, 37(5): 99
15 徐淑权, 蔡 建, 秦旭锋 等. 液晶环氧树脂增韧改性E-51树脂体系性能研究 [J]. 包装工程, 2016, 37(5): 99
16 Le H S, Bui T S, Nguyen N T, et al. Improvements in thermal, mechanical, and dielectric properties of epoxy resin by chemical modification with a novel amino-terminated liquid-crystalline copoly (ester amide) [J]. React. Fun. Poly., 2012, 72(8): 542
17 Derakhshani M, Taheri-Nassaj E, Jazirehpour M, et al. Microwave absorption properties of porous NiZn ferrite powders synthesized by solution combustion method: Effect of fuel contents [J]. J. Alloy. Compd., 2021, 886: 161195
doi: 10.1016/j.jallcom.2021.161195
18 Peng K S, Wu Y H, Liu C Y, et al. Achievement of superior microwave absorption performance and ultra-wide regulation frequency range in Fe-Co-Nd via tuning the phase constitution and crystallinity [J]. J. Magn. Magn. Mater., 2020, 502: 166561
doi: 10.1016/j.jmmm.2020.166561
19 AshraffAli K S, Ravikumar M M, Mohammed J, et al. Investigation of Ku band microwave absorption of three-layer BaFe12O19, carbon-fiber@Fe3O4, and graphene@BaFe12O19@Fe3O4 composite [J]. J. Alloy. Compd., 2021, 884: 161045
doi: 10.1016/j.jallcom.2021.161045
20 Jiang X Y, Wan W H, Wang B, et al. Enhanced anti-corrosion and microwave absorption performance with carbonyl iron modified by organic fluorinated chemicals [J]. Appl. Surf. Sci., 2022, 572: 151320
doi: 10.1016/j.apsusc.2021.151320
21 Yang W T, Yang X S, Hu J K, et al. Mushroom cap-shaped porous carbon particles with excellent microwave absorption properties [J]. Appl. Surf. Sci., 2021, 564: 150437
doi: 10.1016/j.apsusc.2021.150437
22 Tian Y, Estevez D, Wei H J, et al. Chitosan-derived carbon aerogels with multiscale features for efficient microwave absorption [J]. Chem. Eng. J., 2021, 421: 129781
doi: 10.1016/j.cej.2021.129781
23 Logesh G, Sabu U, Srishilan C, et al. Tunable microwave absorption performance of carbon fiber-reinforced reaction bonded silicon nitride composites [J]. Ceram. Inter., 2021, 47(16): 22540
doi: 10.1016/j.ceramint.2021.04.265
24 Li Z, Wang W L, Zhang M, et al. Low frequency electromagnetic parameters and absorbing heat generation properties of carbon nanotubes [J]. CIESC Journal, 2019, 70(S1): 28
24 李 哲, 王文龙, 张 梦 等. 碳纳米管材料低频电磁参数及吸波产热特性 [J]. 化工学报, 2019, 70(S1): 28
25 Pan K W, Leng T, Song J, et al. Controlled reduction of graphene oxide laminate and its applications for ultra-wideband microwave absorption [J]. Carbon, 2020, 160: 307
doi: 10.1016/j.carbon.2019.12.062
26 Tao J Q, Xu L L, Wan L, et al. Cubic-like Co/NC composites derived from ZIF-67 with a dual control strategy of size and graphitization degree for microwave absorption [J]. Nanoscale, 2021, 13: 12896
doi: 10.1039/d1nr03450b pmid: 34477773
27 Zeng Q, Chen P, Yu Q, et al. Self-assembly of ternary hollow microspheres with strong wideband microwave absorption and controllable microwave absorption properties [J]. Sci. Rep., 2017, 7: 8388
doi: 10.1038/s41598-017-08293-3 pmid: 28814735
28 Thi Q V, Lim S, Jang E, et al. Silica particles wrapped with poly (aniline-co-pyrrole) and reduced graphene oxide for advanced microwave absorption [J]. Mater. Chem. Phys., 2020, 244: 122691
doi: 10.1016/j.matchemphys.2020.122691
29 Zeng Q, Xiong X H, Chen P, et al. Air@rGO€Fe3O4 microspheres with spongy shells: self-assembly and microwave absorption performance [J]. J. Mater. Chem. C, 2016, 4(44): 10518
doi: 10.1039/C6TC03780A
30 Liu P B, Gao S, Wang Y, et al. Carbon nanocages with N-doped carbon inner shell and Co/N-doped carbon outer shell as electromagnetic wave absorption materials [J]. Chem. Eng. J., 2020, 381: 122653
doi: 10.1016/j.cej.2019.122653
31 Gong P, Hao L, Li Y, et al. 3D-printed carbon fiber/polyamide-based flexible honeycomb structural absorber for multifunctional broadband microwave absorption [J]. Carbon, 2021, 185: 272
doi: 10.1016/j.carbon.2021.09.014
32 Rojas J A, Ribeiro B, Rezende M C. Influence of serrated edge and rectangular strips of MWCNT bucky paper on the electromagnetic properties of glass fiber/epoxy resin composites [J]. Carbon, 2020, 160: 317
doi: 10.1016/j.carbon.2020.01.036
33 He H, Gao C. Supraparamagnetic, Conductive, and Processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles [J]. ACS Appl. Mater. Interfaces, 2010, 2(11): 3201
doi: 10.1021/am100673g
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 李林龙, 杨丽琪, 薛伟海, 高禩洋, 王旭, 段德莉, 李曙. 稀土改性GCr15钢与保持架材料间的滑动摩擦磨损[J]. 材料研究学报, 2023, 37(6): 408-416.
[8] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[9] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[10] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[11] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[12] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[13] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[14] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[15] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.