Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (1): 40-48    DOI: 10.11901/1005.3093.2020.474
  研究论文 本期目录 | 过刊浏览 |
羟基磷灰石-钛酸钡仿人骨复合材料的制备及其性能
张昌松(), 王楚, 魏立柱, 杨官琳
陕西科技大学机电工程学院 西安 710021
Preparation and Performance Characterization of Hydroxyapatite-Barium Titanate as Human Bone Imitating Composite Material
ZHANG Changsong(), WANG Chu, WEI Lizhu, YANG Guanlin
School of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
引用本文:

张昌松, 王楚, 魏立柱, 杨官琳. 羟基磷灰石-钛酸钡仿人骨复合材料的制备及其性能[J]. 材料研究学报, 2022, 36(1): 40-48.
Changsong ZHANG, Chu WANG, Lizhu WEI, Guanlin YANG. Preparation and Performance Characterization of Hydroxyapatite-Barium Titanate as Human Bone Imitating Composite Material[J]. Chinese Journal of Materials Research, 2022, 36(1): 40-48.

全文: PDF(9939 KB)   HTML
摘要: 

以HA粉和BT粉为原料,用烧结工艺制备羟基磷灰石-钛酸钡(HA-BT)仿人骨复合材料,使用D/max2200PCX光衍射仪、S4800场发射扫描电镜及其附带的X射线能谱仪、STA449F3同步热分析仪、1036PC万能材料试验机、LC2735准静态压电系数测量仪和ZJD-C型介电常数测试仪对其表征,研究BT含量和烧结温度对HA-BT复合材料力学和电学性能的影响并提出了烧结反应的机理。结果表明:部分HA和BT的分解使样品在一定温度下发生反应生成了CaTiO3、Ca3(PO4)2、TiO2、BaTi2O5等相。BT含量为70%、在1200℃烧结的HA-BT生物压电复合材料晶粒尺寸均匀,HA与BT间的反应性较小,其微观结构致密且抗压强度(110.215 MPa)和电学性能(d33=2 pC/N,εr=44.6)与人体皮质骨的性能相仿。

关键词 复合材料生物压电陶瓷骨组织常压烧结电学性能    
Abstract

Hydroxyapatite (HA)-barium titanate (BT) of human bone imitating composite material was prepared by sintering process with HA powder and BT powder as raw material,and then was characterized by XRD, SEM with EDS, synchronous thermal analyzer, universal material testing machine, quasi-static piezoelectric coefficient measuring instrument and dielectric constant measuring instrument. The results show: the partial decomposition of HA and BT resulted in the reaction of the raw materials in the pressed block at certain temperature to produce CaTiO3, Ca3(PO4)2, TiO2, BaTi2O5 and other phases. The bio-piezoelectric HA-BT composite containing 70% BT sintered at 1200℃ is composed of grains uniform size with good compactness and comprehensive property closed to those of human bone, such as compressive strength (110.215 MPa) and electrical properties (d33=2 pC/N, εr=44.6).

Key wordscomposite    biological piezoelectric ceramics    bone tissue    atmospheric sintering    piezoelectric properties
收稿日期: 2020-11-05     
ZTFLH:  TB332  
基金资助:西安近代化学研究所开放合作创新基金(SYJJ200304)
作者简介: 张昌松,男,1976年生,副教授
图1  在1200℃烧结1 h且BT含量不同的HA-BT复合材料的XRD谱和HA-70BT的XRD谱中的双峰结构
图2  不同BT含量在1200℃下烧结1 h的HA-BT的SEM照片和EDS图
图3  不同BT含量在1200℃下烧结1 h的HA-BT复合陶瓷材料的密度和抗压强度
图4  不同BT含量在1200℃烧结1 h的HA-BT复合陶瓷材料的电学参数
图5  在不同温度烧结的HA-70BT的XRD谱
图6  HA-70BT样品的TG-DSC谱
图7  HA-70BT样品的烧结反应过程
图8  在不同温度烧结的HA-70BT的微观形貌
图9  在不同温度烧结的HA-70BT的密度和抗压强度
图10  在不同温度烧结的HA-70BT的电学参数
1 Ma H S, Feng C, Chang J, et al. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy [J]. Acta Biomater., 2018, 79: 37
2 Wang Y C, Malcolm D W, Benoit D S W. Controlled and sustained delivery of siRNA/NPs from hydrogels expedites bone fracture healing [J]. Biomaterials, 2017, 139: 127
3 Sui B D, Hu C H, Liu A Q, et al. Stem cell-based bone regeneration in diseased microenvironments: Challenges and solutions [J]. Biomaterials, 2019, 196: 18
4 Zhu Y, Zhang K, Zhao R, et al. Bone regeneration with micro/nano hybrid-structured biphasic calcium phosphate bioceramics at segmental bone defect and the induced immunoregulation of MSCs [J]. Biomaterials, 2017, 147: 133
5 Lai Y X, Cao H J, Wang X L, et al. Porous composite scaffold incorporating osteogenic phytomolecule icariin for promoting skeletal regeneration in challenging osteonecrotic bone in rabbits [J]. Biomaterials, 2018, 153: 1
6 Fukada E, Yasuda I. On the piezoelectric effect of bone [J]. J. Phys. Soc. Jpn., 1957, 12: 1158
7 Itoh S, Nakamura S, Nakamura M, et al. Enhanced bone ingrowth into hydroxyapatite with interconnected by electrical polarization [J]. Biomaterials, 2006, 27: 5572
8 Bagno A, Piovan A, Dettin M, et al. Human osteoblast-like cell adhesion on titanium substrates covalently functionalized with synthetic peptides [J]. Bone, 2007, 40: 693
9 Fukada E. Mechanical deformation and electrical polarization in biological substances [J]. Biorheology, 1968, 5: 199
10 Fukada E, Yasuda I. Piezoelectric effects in collagen [J]. Jpn. J. Appl. Phys., 1964, 3(8): 117
11 Kay M I, Young R A, Posner A S. Crystal structure of hydroxyapatite [J]. Nature, 1964, 204: 1050
12 Jiao H, Zhao K, Bian T R, et al. Hydrothermal synthesis and properties characterization of barium titanate/hydroxyapatite spherical nanocomposite materials [J]. J. Alloys Compd., 2017, 715: 73
13 Lee B T, Kim K H, Youn H C, et al. Functionally gradient and micro-channeled Al2O3-(t-ZrO2)/HAp composites [J]. J Am. Ceram. Soc., 2007, 90: 629
14 Huang S P, Huang B Y, Zhou K C, et al. Effects of coatings on the mechanical properties of carbon fiber reinforced HAP composites [J]. Mater. Lett., 2004, 58: 3582
15 Kumar D, Gittings J P, Turner L G, et al. Polarization of hydroxyapatite: Influence on osteoblast cell proliferation [J]. Acta Biomater., 2010, 6: 1549
16 Bodhak S, Bose S, Bandyopadhyay A. Role of surface charge and wettability on early stage mineralization and bone cell-materials interactions of polarized hydroxyapatite [J]. Acta Biomater., 2009, 5: 2178
17 Teng N C, Nakamura S, Takagi Y, et al. A new approach to enhancement of bone formation by electrically polarized hydroxyapatite [J]. J. Dent. Res., 2001, 80: 1925
18 Park Y J, Hwang K S, Song J E, et al. Growth of calcium phosphate on poling treated ferroelectric BaTiO3 ceramics [J]. Biomaterials, 2002, 23: 3859
19 Feng J Q, Yuan H P, Zhang X D. Promotion of osteogenesis by a piezoelectric biological ceramic [J]. Biomaterials, 1997, 18: 1531.
20 Tang Y F, Wu C, Wu Z X, et al. Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration [J]. Sci. Rep., 2017, 7: 43360
21 Dubey A K, Anumol E A, Balani K, et al. Multifunctional properties of multistage spark plasma sintered HA-BaTiO3‐based piezobiocomposites for bone replacement applications [J]. J. Am. Ceram. Soc., 2013, 96: 3753
22 Ozcelik B K, Ergun C, Liu H N. A study on calcium phosphate/barium titanate composites: phase characterization, piezoelectric property, and cytocompatibility [J]. J. Aust. Ceram. Soc., 2020, 56(4): 1197
23 Sharabi M, Mandelberg Y, Benayahu D, et al. A new class of bio-composite materials of unique collagen fibers [J]. J. Mech. Behav. Biomed. Mater., 2014, 36: 71
24 Wu L, Chure M C, Wu K K, et al. Dielectric properties of barium titanate ceramics with different materials powder size [J]. Ceram. Int., 2009, 35: 957
25 Inoue M, Rodriguez A P, Takagi T, et al. Effect of a new titanium coating material (CaTiO3-aC) prepared by thermal decomposition method on osteoblastic cell response [J]. J. Biomater. Appl., 2010, 24: 657
26 Gu Y W, Loh N H, Khor K A, et al. Spark plasma sintering of hydroxyapatite powders [J]. Biomaterials, 2002, 23: 37
27 Tavangar M, Heidari F, Hayati R, et al. Manufacturing and characterization of mechanical, biological and dielectric properties of hydroxyapatite-barium titanate nanocomposite scaffolds [J]. Ceram. Int., 2020, 46: 9086
28 Vouilloz F J, Castro M S, Vargas G E, et al. Reactivity of BaTiO3-Ca10(PO4)6(OH)2 phases in composite materials for biomedical applications [J]. Ceram. Int., 2017, 43: 4212
29 Rezwan K, Chen Q Z, Blaker J J, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering [J]. Biomaterials, 2006, 27: 3413
30 Park J B, Lake R S. Biomaterials. An Introduction [M]. 2nd ed. New York: Plenum Press, 1992: 194
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.