|
|
羟基磷灰石-钛酸钡仿人骨复合材料的制备及其性能 |
张昌松( ), 王楚, 魏立柱, 杨官琳 |
陕西科技大学机电工程学院 西安 710021 |
|
Preparation and Performance Characterization of Hydroxyapatite-Barium Titanate as Human Bone Imitating Composite Material |
ZHANG Changsong( ), WANG Chu, WEI Lizhu, YANG Guanlin |
School of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China |
引用本文:
张昌松, 王楚, 魏立柱, 杨官琳. 羟基磷灰石-钛酸钡仿人骨复合材料的制备及其性能[J]. 材料研究学报, 2022, 36(1): 40-48.
Changsong ZHANG,
Chu WANG,
Lizhu WEI,
Guanlin YANG.
Preparation and Performance Characterization of Hydroxyapatite-Barium Titanate as Human Bone Imitating Composite Material[J]. Chinese Journal of Materials Research, 2022, 36(1): 40-48.
1 |
Ma H S, Feng C, Chang J, et al. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy [J]. Acta Biomater., 2018, 79: 37
|
2 |
Wang Y C, Malcolm D W, Benoit D S W. Controlled and sustained delivery of siRNA/NPs from hydrogels expedites bone fracture healing [J]. Biomaterials, 2017, 139: 127
|
3 |
Sui B D, Hu C H, Liu A Q, et al. Stem cell-based bone regeneration in diseased microenvironments: Challenges and solutions [J]. Biomaterials, 2019, 196: 18
|
4 |
Zhu Y, Zhang K, Zhao R, et al. Bone regeneration with micro/nano hybrid-structured biphasic calcium phosphate bioceramics at segmental bone defect and the induced immunoregulation of MSCs [J]. Biomaterials, 2017, 147: 133
|
5 |
Lai Y X, Cao H J, Wang X L, et al. Porous composite scaffold incorporating osteogenic phytomolecule icariin for promoting skeletal regeneration in challenging osteonecrotic bone in rabbits [J]. Biomaterials, 2018, 153: 1
|
6 |
Fukada E, Yasuda I. On the piezoelectric effect of bone [J]. J. Phys. Soc. Jpn., 1957, 12: 1158
|
7 |
Itoh S, Nakamura S, Nakamura M, et al. Enhanced bone ingrowth into hydroxyapatite with interconnected by electrical polarization [J]. Biomaterials, 2006, 27: 5572
|
8 |
Bagno A, Piovan A, Dettin M, et al. Human osteoblast-like cell adhesion on titanium substrates covalently functionalized with synthetic peptides [J]. Bone, 2007, 40: 693
|
9 |
Fukada E. Mechanical deformation and electrical polarization in biological substances [J]. Biorheology, 1968, 5: 199
|
10 |
Fukada E, Yasuda I. Piezoelectric effects in collagen [J]. Jpn. J. Appl. Phys., 1964, 3(8): 117
|
11 |
Kay M I, Young R A, Posner A S. Crystal structure of hydroxyapatite [J]. Nature, 1964, 204: 1050
|
12 |
Jiao H, Zhao K, Bian T R, et al. Hydrothermal synthesis and properties characterization of barium titanate/hydroxyapatite spherical nanocomposite materials [J]. J. Alloys Compd., 2017, 715: 73
|
13 |
Lee B T, Kim K H, Youn H C, et al. Functionally gradient and micro-channeled Al2O3-(t-ZrO2)/HAp composites [J]. J Am. Ceram. Soc., 2007, 90: 629
|
14 |
Huang S P, Huang B Y, Zhou K C, et al. Effects of coatings on the mechanical properties of carbon fiber reinforced HAP composites [J]. Mater. Lett., 2004, 58: 3582
|
15 |
Kumar D, Gittings J P, Turner L G, et al. Polarization of hydroxyapatite: Influence on osteoblast cell proliferation [J]. Acta Biomater., 2010, 6: 1549
|
16 |
Bodhak S, Bose S, Bandyopadhyay A. Role of surface charge and wettability on early stage mineralization and bone cell-materials interactions of polarized hydroxyapatite [J]. Acta Biomater., 2009, 5: 2178
|
17 |
Teng N C, Nakamura S, Takagi Y, et al. A new approach to enhancement of bone formation by electrically polarized hydroxyapatite [J]. J. Dent. Res., 2001, 80: 1925
|
18 |
Park Y J, Hwang K S, Song J E, et al. Growth of calcium phosphate on poling treated ferroelectric BaTiO3 ceramics [J]. Biomaterials, 2002, 23: 3859
|
19 |
Feng J Q, Yuan H P, Zhang X D. Promotion of osteogenesis by a piezoelectric biological ceramic [J]. Biomaterials, 1997, 18: 1531.
|
20 |
Tang Y F, Wu C, Wu Z X, et al. Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration [J]. Sci. Rep., 2017, 7: 43360
|
21 |
Dubey A K, Anumol E A, Balani K, et al. Multifunctional properties of multistage spark plasma sintered HA-BaTiO3‐based piezobiocomposites for bone replacement applications [J]. J. Am. Ceram. Soc., 2013, 96: 3753
|
22 |
Ozcelik B K, Ergun C, Liu H N. A study on calcium phosphate/barium titanate composites: phase characterization, piezoelectric property, and cytocompatibility [J]. J. Aust. Ceram. Soc., 2020, 56(4): 1197
|
23 |
Sharabi M, Mandelberg Y, Benayahu D, et al. A new class of bio-composite materials of unique collagen fibers [J]. J. Mech. Behav. Biomed. Mater., 2014, 36: 71
|
24 |
Wu L, Chure M C, Wu K K, et al. Dielectric properties of barium titanate ceramics with different materials powder size [J]. Ceram. Int., 2009, 35: 957
|
25 |
Inoue M, Rodriguez A P, Takagi T, et al. Effect of a new titanium coating material (CaTiO3-aC) prepared by thermal decomposition method on osteoblastic cell response [J]. J. Biomater. Appl., 2010, 24: 657
|
26 |
Gu Y W, Loh N H, Khor K A, et al. Spark plasma sintering of hydroxyapatite powders [J]. Biomaterials, 2002, 23: 37
|
27 |
Tavangar M, Heidari F, Hayati R, et al. Manufacturing and characterization of mechanical, biological and dielectric properties of hydroxyapatite-barium titanate nanocomposite scaffolds [J]. Ceram. Int., 2020, 46: 9086
|
28 |
Vouilloz F J, Castro M S, Vargas G E, et al. Reactivity of BaTiO3-Ca10(PO4)6(OH)2 phases in composite materials for biomedical applications [J]. Ceram. Int., 2017, 43: 4212
|
29 |
Rezwan K, Chen Q Z, Blaker J J, et al. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering [J]. Biomaterials, 2006, 27: 3413
|
30 |
Park J B, Lake R S. Biomaterials. An Introduction [M]. 2nd ed. New York: Plenum Press, 1992: 194
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|