Please wait a minute...
材料研究学报  2022, Vol. 36 Issue (1): 29-39    DOI: 10.11901/1005.3093.2021.334
  研究论文 本期目录 | 过刊浏览 |
中空碳/Fe3O4磁性量子点复合材料的制备及其吸波性能
陈冠震1, 陈平1,2(), 徐东卫1, 闵卫星1
1.大连理工大学化工学院 精细化工国家重点实验室 大连 116024
2.大连理工大学 三束材料改性教育部重点实验室 大连 116024
Preparation and Microwave Absorbtion Performance of Composite Hollow Carbon/Fe3O4 Magnetic Quantum Dots
CHEN Guanzhen1, CHEN Ping1,2(), XU Dongwei1, MIN Weixing1
1.State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
2.Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education, Dalian University of Technology, Dalian 116024, China
引用本文:

陈冠震, 陈平, 徐东卫, 闵卫星. 中空碳/Fe3O4磁性量子点复合材料的制备及其吸波性能[J]. 材料研究学报, 2022, 36(1): 29-39.
Guanzhen CHEN, Ping CHEN, Dongwei XU, Weixing MIN. Preparation and Microwave Absorbtion Performance of Composite Hollow Carbon/Fe3O4 Magnetic Quantum Dots[J]. Chinese Journal of Materials Research, 2022, 36(1): 29-39.

全文: PDF(8674 KB)   HTML
摘要: 

将二氧化硅作为模板,通过原位聚合-溶剂热-煅烧工艺合成中空碳/Fe3O4磁性量子点复合材料,通过改变硝酸铁的添加量即相对碳含量来调控复合材料的电磁参数从而调节其微波吸收性能。使用扫描电镜(SEM)、透射电镜(TEM)表征了材料的结构和形貌,用拉曼光谱表征了材料的内部结构缺陷和相对石墨化程度,使用X射线晶体衍射(XRD)、X射线光电子能谱(XPS)表征了材料的晶体结构和化学组成。结果表明,厚度为2.55 mm的材料具有7.06 GHz的最大有效吸收带宽(EAB),最小反射损耗值(RLmin)可以达到-43 dB。这种材料优异的微波吸收性能,主要源自于其电磁匹配特性以及介电-磁损耗的协同作用。

关键词 复合材料微波吸收材料溶剂热反应X波段中空结构    
Abstract

The composite of hollow carbon/Fe3O4 magnetic quantum dots (C/MQDs) was synthesized via in-situ polymerization-solvothermal-calcination process with silicon dioxide as the template. The morphology, crystallographic structure, chemical composition, intrinsic structural defects, relative graphitization degree and electromagnetic parameters of the prepared composite C/MQDs were characterized by means of SEM, TEM, Raman spectroscopy, XRD, XPS and Vector network analyzer (VNA) etc. It follows that electromagnetic parameters of the prepared C/MQDs could be adjusted by changing the addition amount of ferric nitrate so that to adjust its microwave absorption (MA) performance. In fact, a hollow ring made of the mixed composite and paraffin with 7 mm in outer diameter and 2.55 mm in thickness presented a maximum effective absorption bandwidth (EAB) of 7.06 GHz and a minimum reflection loss value (RLmin) of -43 dB. The excellent microwave absorption performance of the prepared composite is mainly derived from its electromagnetic matching characteristics and the synergistic effect of dielectric-magnetic loss.

Key wordscomposite    microwave absorbing materials    solvothermal    X-band    hollow structure
收稿日期: 2021-05-28     
ZTFLH:  TB332  
基金资助:兴辽英才创新领军人才项目(XLYC1802085);国家自然科学基金(51873109);大连市科技创新基金重大项目(2019J11-CY007);中央高校基本科研业务费资助项目(DUT20TD207);三束材料改性教育部重点实验室基金(KF2004)
作者简介: 陈冠震,男,1996年生,硕士生
图1  C/MQDs复合材料的制备流程
图2  H-C、H-C@Fe-G以及C/MQDs-2的XRD谱
图3  H-C和C/MQDs-x的拉曼光谱
图4  C/MQDs-x的室温磁滞回线
图5  C/MQDs-2的XPS 全谱图、Fe 2p分峰图、C 1s分峰图以及O 1s分峰图
图6  H-C, H-C@Fe-G和C/MQDs-2复合材料的扫描电镜照片
图7  C/MQDs复合材料大的透射电镜照片和能量转换色谱
图8  C/MQDs-1、C/MQDs-2和C/MQDs-3的厚度、频率和反射损耗绘制的等高线图,以及厚度变化对应的反射损耗曲线(质量分数为15%,混合于石蜡)
图9  不同种类C/Fe3O4复合材料在特定厚度下的最小RL值和RLmin处对应的EAB
图10  C/MQDs-x的ε′, ε″, tanδε以及Cole-Cole半环
图11  C/MQDs-1、C/MQDs-2和C/MQDs-3的复磁导率常数的μ′、μ″、tanδμ以及涡流损耗曲线
图12  衰减常数、在1~18 GHz频率范围内厚度为2.35 mm的各种样品Zin-1的模量、匹配厚度(tm)和计算厚度对1/4波长处匹配频率(fm)的依赖性
图13  C/MQDs复合材料的吸波机理
1 Zhao B, Li Y, Zeng Q W, et al. Galvanic replacement reaction involving core-shell magnetic chains and orientation-tunable microwave absorption properties [J]. Small, 2020, 16: 2003502
2 Lv H L, Ji G B, Liu W, et al. Achieving hierarchical hollow carbon@Fe@Fe3O4 nanospheres with superior microwave absorption properties and lightweight features [J]. J. Mater. Chem. C, 2015, 3: 10232
3 Xiang Z, Song Y M, Xiong J, et al. Enhanced electromagnetic wave absorption of nanoporous Fe3O4@carbon composites derived from metal-organic frameworks [J]. Carbon, 2019, 142: 20
4 Liu P B, Huang Y, Zhang X. Synthesis and excellent microwave absorption properties of graphene/polypyrrole composites with Fe3O4 particles prepared via a co-precipitation method [J]. Mater. Lett., 2014, 129: 35
5 Song X H, Li X J, Yan H H. Preparation and microwave absorption properties of MWCNTs/Fe3O4/NBR composites [J]. Diam. Relat. Mater., 2019, 100: 107573
6 Liu X F, Chen Y X, Cui X R, et al. Flexible nanocomposites with enhanced microwave absorption properties based on Fe3O4/SiO2 nanorods and polyvinylidene fluoride [J]. J. Mater. Chem., 2015, 3A: 12197
7 Meng F B, Wei W, Chen X N, et al. Design of porous C@Fe3O4 hybrid nanotubes with excellent microwave absorption [J]. Phys. Chem. Chem. Phys., 2016, 18: 2510
8 Cheng Y, Cao J M, Li Y, et al. The outside-in approach to construct Fe3O4 nanocrystals/mesoporous carbon hollow spheres core-shell hybrids toward microwave absorption [J]. ACS Sustainable Chem. Eng., 2018, 6: 1427
9 He J R, Luo L, Chen Y F, et al. Yolk-shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium-sulfur batteries [J]. Adv. Mater., 2017, 29: 1702707
10 Du Y C, Liu W W, Qiang R, et al. Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites [J]. ACS Appl. Mater. Interfaces, 2014, 6: 12997
11 Ding D, Wang Y, Li X D, et al. Rational design of core-shell Co@C microspheres for high-performance microwave absorption [J]. Carbon, 2017, 111: 722
12 Liu T, Zhang L Y, You W, et al. Core-shell nitrogen-doped carbon hollow Spheres/Co3O4 nanosheets as advanced electrode for high-performance supercapacitor [J]. Small, 2018, 14: 1702407
13 Ma F X, Hu H, Wu H B, et al. Formation of uniform Fe3O4 hollow spheres organized by ultrathin nanosheets and their excellent lithium storage properties [J]. Adv. Mater., 2015, 27: 4097
14 Wei S, Wang X X, Zhang B Q, et al. Preparation of hierarchical core-shell C@NiCo2O4@Fe3O4 composites for enhanced microwave absorption performance [J]. Chem. Eng. J., 2017, 314: 477
15 Mishra M, Singh A P, Singh B P, et al. Conducting ferrofluid: a high-performance microwave shielding material [J]. J. Mater. Chem., 2014, 2A: 13159
16 Xu H L, Yin X W, Zhu M, et al. Constructing hollow graphene nano-spheres confined in porous amorphous carbon particles for achieving full X band microwave absorption [J]. Carbon, 2019, 142: 346
17 Li Z X, Li X H, Zong Y, et al. Solvothermal synthesis of nitrogen-doped graphene decorated by superparamagnetic Fe3O4 nanoparticles and their applications as enhanced synergistic microwave absorbers [J]. Carbon, 2017, 115: 493
18 Sun X, He J P, Li G X, et al. Laminated magnetic graphene with enhanced electromagnetic wave absorption properties [J]. J. Mater. Chem., 2013, 1C: 765
19 Wang F Y, Wang N, Han X J, et al. Core-shell FeCo@carbon nanoparticles encapsulated in polydopamine-derived carbon nanocages for efficient microwave absorption [J]. Carbon, 2019, 145: 701
20 Cao M S, Hou Z L, Song W L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites [J]. Carbon, 2010, 48: 788
21 Liang X H, Wang G H, Gu W H, et al. Prussian blue analogue derived carbon-based composites toward lightweight microwave absorption [J]. Carbon, 2021, 177: 97
22 Liang X H, Man Z M, Quan B, et al. Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption [J]. Nano-Micro Lett., 2020, 12: 102
23 Cao M S, Cai Y Z, He P, et al. 2D MXenes: electromagnetic property for microwave absorption and electromagnetic interference shielding [J]. Chem. Eng. J., 2019, 359: 1265
24 Huang L, Li J J, Wang Z J, et al. Microwave absorption enhancement of porous C@CoFe2O4 nanocomposites derived from eggshell membrane [J]. Carbon, 2019, 143: 507
25 Xu X F, Wang G Z, Wan G P, et al. Magnetic Ni/graphene connected with conductive carbon nano-onions or nanotubes by atomic layer deposition for lightweight and low-frequency microwave absorption [J]. Chem. Eng. J., 2020, 382: 122980
26 Wang Y L, Yang S H, Wang H Y, et al. Hollow porous CoNi/C composite nanomaterials derived from MOFs for efficient and lightweight electromagnetic wave absorber [J]. Carbon, 2020, 167: 485
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.