Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (7): 481-492    DOI: 10.11901/1005.3093.2020.530
  研究论文 本期目录 | 过刊浏览 |
CW对低合金Cr-Mo钢焊缝金属组织和冲击韧性的影响
朱高文1,2, 吴栋1, 陆善平1()
1.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
Effect of C- and W-content on Microstructure and Toughness of Weld Metal for Low Alloy Cr-Mo Steel
ZHU Gaowen1,2, WU Dong1, LU Shanping1()
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

朱高文, 吴栋, 陆善平. CW对低合金Cr-Mo钢焊缝金属组织和冲击韧性的影响[J]. 材料研究学报, 2021, 35(7): 481-492.
Gaowen ZHU, Dong WU, Shanping LU. Effect of C- and W-content on Microstructure and Toughness of Weld Metal for Low Alloy Cr-Mo Steel[J]. Chinese Journal of Materials Research, 2021, 35(7): 481-492.

全文: PDF(49178 KB)   HTML
摘要: 

使用OM、SEM、EPMA、EBSD等手段并进行热膨胀和冲击等实验,研究了C和W元素对第四代钠冷快堆用低合金Cr-Mo钢钨极氩弧焊(TIG)熔敷金属微观组织和冲击韧性的影响。结果表明:多道次焊接热循环使多层多道焊缝金属的组织分布不均匀,分为表层焊缝组织和中间焊缝组织。表层焊缝组织,可分为熔化区(MZ)、粗晶区(CGHAZ)、细晶区(FGHAZ)、不完全相变区(ICHAZ)、临界再热粗晶区(ICCGHAZ)以及亚临界再热区(SCHAZ)。在中间焊缝金属中,有沿着原奥晶界分布的链状组织和等轴晶组织。等轴晶组织为回火贝氏体,韧性较好。链状组织中含有大量的二次硬化相M-A组元且存在应力集中,促进裂纹萌生并恶化焊缝金属韧性。提高C含量能促进表层焊缝金属中板条贝氏体和中间焊缝金属中链状组织的形成,从而恶化焊缝金属韧性;提高W含量能促进表层焊缝金属中板条贝氏体的形成、抑制中间焊缝金属中链状组织的形成,从而改善焊缝金属的韧性。

关键词 金属材料Cr-Mo钢焊缝金属元素含量链状组织冲击韧性    
Abstract

The effect of C- and W-content on the microstructure and impact toughness of the weld metals for 2.25Cr1Mo steel weld via tungsten argon arc welding (TIG) technique was investigated by means of OM, SEM, EPMA, EBSD, thermal expansion- and impact-test. The results show that the microstructure of the multi-layer and multi-pass weld metal was heterogeneous, which can be divided into upper weld metal and intermediate weld metal. The upper weld metal can be divided into melting zone (MZ), coarse grain heat affected zone (CGHAZ), fine grain heat affected zone (FGHAZ), inter-critical heat affected zone (ICHAZ), inter-critically reheat coarse grain heat affected zone (ICCGHAZ) and sub-critical heat affected zone (SCHAZ). Intermediate weld metal composed of necklace-type microstructure which distribute along the prior austenite grain boundary and equiaxed crystal structure. The equiaxed crystal structure was tempered bainite with good toughness. Necklace-type microstructure composed of a large number of M-A constituents, which could easily cause stress concentration and promote crack initiation, whereas, deteriorate the toughness of weld metal. Increasing C content could promote the formation of lath bainite in upper weld metal and necklace-type microstructure in intermediate weld metal, which deteriorated the toughness of weld metal; However, increasing W content could promote the formation of lath bainite in upper weld metal and inhibit the formation of necklace-type microstructure in intermediate weld metal, which is beneficial to improving the toughness of weld metal.

Key wordsmetallic materials    Cr-Mo weld metal    element content    necklace-type microstructure    impact toughness
收稿日期: 2020-12-17     
ZTFLH:  TG424  
基金资助:辽宁省科技重大专项(2020JH1/10100001);辽宁省自然科学基金(2019JH3/30100039)
作者简介: 朱高文,男,1994年生,硕士
Current/AVoltage/V

Feed speed

/m·min-1

Travel speed

/m·min-1

17013.5-15.00.70.07
表1  TIG焊接工艺参数
图1  焊接接头的示意图
ElementsCWCrMoSiMnFe
02C0.0210.042.030.620.290.57Bal.
05C/04W0.0420.0382.020.620.240.49Bal.
08C0.0750.042.050.630.250.49Bal.
0W0.05802.040.630.230.51Bal.
09W0.0540.0861.970.640.240.43Bal.
Base metal0.13<0.052.170.950.240.46Bal.
表2  熔敷金属和母材的化学成分
图2  冲击试样的取样位置
图3  热循环工艺
图4  多层多道焊缝金属的OM图
图5  表层焊缝各亚区显微组织的SEM图
Primary zoneFirst thermal cycleSecond thermal cycle
MZCGHAZ(Tp>1200℃)ICCGHAZ(AC1<Tp<AC3)
SCHAZ(Tp<AC1)
FGHAZ(AC3<Tp<1200℃)
ICHAZ(AC1<Tp<AC3)
表3  表层焊缝各亚区的焊接热循环温度范围
图6  中间焊缝金属组织表征
图7  链状组织表征
图8  链状组织的EBSD分析
图9  不同C含量焊缝金属显微组织OM图
图10  不同C含量焊缝金属的CCT曲线
图11  不同W含量焊缝金属显微组织OM图
图12  不同W含量焊缝金属的CCT曲线
图13  不同C含量焊缝金属的冲击吸收功
图14  不同C含量中间焊缝组织的SEM图
图15  不同C含量焊缝金属二次裂纹的SEM图
图16  二次裂纹的SEM图
图17  不同W含量焊缝金属的冲击吸收功
图18  不同W含量焊缝金属中间焊缝组织的SEM图
图19  不同W含量焊缝金属二次裂纹的SEM图
1 Pan X X. Development of steam generator main materials for fast reactor [J]. World Nonferrous Metals, 2017, 9: 181
1 潘相相. 钠冷快堆蒸汽发生器主材研究进展 [J]. 世界有色金属, 2017, 9: 181
2 Guidez J, Martin L, Chetal S C, et al. Lessons Learned from Sodium-Cooled Fast Reactor Operation and Their Ramifications for Future Reactors with Respect to Enhanced Safety and Reliability [J]. Nucl. Technol., 2017, 164(2): 207
3 Li X D, Shang C J, Han C C, et al. Influence of necklace-type M-A constituent on impact toughness and fracture mechanism in the heat affected zone of X100 pipeline steel [J]. Acta Metall. Sin., 2016, 52(9): 1025
3 李学达, 尚成嘉, 韩昌柴等. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响 [J].金属学报, 2016, 52(9): 1025
4 Mohseni P, Solberg J K, Karlsen M, et al. Cleavage Fracture Initiation at M-A Constituents in Intercritically Coarse-Grained Heat-Affected Zone of a HSLA Steel [J]. Metall. Mater. Trans. A, 2013, 45(1): 384
5 Li Y, Baker T N. Effect of morphology of martensite-austenite phase on fracture of weld heat affected zone in vanadium and niobium microalloyed steels [J]. Mater. Sci. Tech., 2013, 26(9): 1029
6 Li X D, Ma X P, Subramanian S V, et al. Influence of prior austenite grain size on martensite-austenite constituent and toughness in the heat affected zone of 700 MPa high strength linepipe steel [J]. Mat. Sci. Eng. A, 2014, 616: 141
7 Li X D, Fan Y R, Ma X P, et al. Influence of martensite-austenite constituents formed at different intercritical temperatures on toughness [J]. Mater. Design., 2015, 67: 457
8 Bayraktar E, Kaplan D. Mechanical and metallurgical investigation of martensite-austenite constituents in simulated welding conditions [J]. J. Mater. Process. Tech., 2004, 153: 87
9 Moeinifar S, Kokabi A H, Hosseini H R M. Effect of tandem submerged arc welding process and parameters of Gleeble simulator thermal cycles on properties of the intercritically reheated heat affected zone [J]. Mater. Design., 2011, 32(2): 869
10 Li Y, Crowther D N, Green M J W, et al. The effect of vanadium and niobium on the properties and microstructure of the intercritically reheated coarse grained heat affected zone in low carbon microalloyed steels [J]. Isij. Int 41., 2001, 41(1): 46
11 Kiani-Rashid A R. Effect of aluminum on stability of retained austenite in bainitic malleable cast iron [J]. Met. Sci. Heat. Treat., 2011, 53(7): 322
12 Miyata K, Sawaragi Y. Effect of Mo and W on the phase stability of precipitates in low Cr heat resistant steels [J]. Isij. International., 2001, 41(3): 281
13 Avazkonandeh-Gharavol M H, Haddad-Sabzevar M, Haerian A. Effect of chromium content on the microstructure and mechanical properties of multipass MMA, low alloy steel weld metal [J]. J. Mater. Sci., 2009, 44(1): 186
14 Lan L Y, Qiu C L, Song H Y, et al. Correlation of martensite–austenite constituent and cleavage crack initiation in welding heat affected zone of low carbon bainitic steel [J]. Mater. Lett., 2014, 125: 86
15 Davis C L, King J E. Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone: Part I. Fractographic evidence [J]. Metall. Mater. Trans. A., 1994, 25(3): 563
16 You Y, Shang C J, Chen L, et al. Investigation on the crystallography of the transformation products of reverted austenite in intercritically reheated coarse grained heat affected zone [J]. Mater. Design., 2013, 43: 485
17 Nuruddin I K. Effect of welding thermal cycles on the heat affected zone microstructure and toughness of multi-pass welded pipeline steels [D]. UK: Cranfield University, 2012
18 Takayama N, Miyamoto G, Furuhara T. Chemistry and three-dimensional morphology of martensite-austenite constituent in the bainite structure of low-carbon low-alloy steels [J]. Acta Mater., 2018, 145: 154
19 Zhu J L, Liu S F, Cao Y, et al. Effect of cross rolling cycle on the deformed and recrystallized gradient in high-purity tantalum plate [J]. Acta Metall. Sin., 2019, 8(55): 1019
19 祝佳林, 刘施峰, 曹宇等. 交叉轧制周期对高纯Ta板变形及再结晶梯度的影响 [J]. 金属学报, 2019, 55(8): 1019
20 Wright S I, Nowell M M, Field D P. A review of strain analysis using electron backscatter diffraction [J]. Microsc. Microanal., 2011, 17(3): 316
21 Li X D, Shang C J, Ma X P, et al. Structure and crystallography of martensite-austenite constituent in the intercritically reheated coarse-grained heat affected zone of a high strength pipeline steel [J]. Mater. Charact., 2018, 138: 107
22 Cui Z Q, Qin Y C. Metallurgy and Heat Treatment [M]. Beijing: China Machine Press, 2000
22 崔忠圻, 覃耀春. 金属学与热处理 [M]. 北京: 机械工业出版社, 2000
23 Ritchie R O, Knott J F, Rice J. Relationship between critical tensile stress and fracture toughness in mild steel [D]. USA: Brown University, 1973
24 Griffiths J R, Owen D R J. An elastic-plastic stress analysis for a notched bar in plane strain bending [J]. J. Mech. Phys. Solids., 1971, 19(6): 419
25 Zhou Z L, Liu S H. Influence of local brittle zone on the fracture toughness of high-strength low-alloyed multipass weld metals [J]. Acta Metall. Sin., 2009, 11(2): 87
26 Liu Z C, Ren H P. Bainite and Bainite Transformation [M]. Beijing: Metallurgical Industry Press, 2009
26 刘宗昌, 任慧平. 贝氏体与贝氏体相变 [M]. 北京: 冶金工业出版社, 2009
27 Keehan E, Karlsson L, Andrén H O, et al. New developments with C-Mn-Ni high strength steel weld metals, Part A. Microstructure [J]. Weld. J., 2006, 85(9): 200
28 Brooksbank D. Tessellated stresses associated with some inclusions in steel [J]. J. Iron. Steel. Inst., 1969, 207: 474.
29 Klueh R L, Alexander D J, Kenik E A. Development of low-chromium, chromium-tungsten steels for fusion [J]. J. Nucl. Mater., 1995, 227(1): 11
30 Zhao J W, Jiang Z Y, Kim J S, et al. Effects of tungsten on continuous cooling transformation characteristics of microalloyed steels [J]. Mater. Design., 2013, 49: 252
31 Zajac S, Schwinn V, Tacke K H. Characterisation and quantification of complex bainitic microstructures in high and ultra-high strength linepipe steels [J]. Mater. Sci. Forum, 2005, 500: 387
32 Saeidi N, Ekrami A. Impact properties of tempered bainite-ferrite dual phase steels [J]. Mat. Sci. Eng. A., 2010, 527(21): 5575
33 Madej M. Tungsten carbide as an addition to high speed steel based composites [J]. Tungsten Carbide-Processing and Applications., 2012: 57
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.