|
|
C和W对低合金Cr-Mo钢焊缝金属组织和冲击韧性的影响 |
朱高文1,2, 吴栋1, 陆善平1( ) |
1.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 2.中国科学技术大学材料科学与工程学院 沈阳 110016 |
|
Effect of C- and W-content on Microstructure and Toughness of Weld Metal for Low Alloy Cr-Mo Steel |
ZHU Gaowen1,2, WU Dong1, LU Shanping1( ) |
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
朱高文, 吴栋, 陆善平. C和W对低合金Cr-Mo钢焊缝金属组织和冲击韧性的影响[J]. 材料研究学报, 2021, 35(7): 481-492.
Gaowen ZHU,
Dong WU,
Shanping LU.
Effect of C- and W-content on Microstructure and Toughness of Weld Metal for Low Alloy Cr-Mo Steel[J]. Chinese Journal of Materials Research, 2021, 35(7): 481-492.
1 |
Pan X X. Development of steam generator main materials for fast reactor [J]. World Nonferrous Metals, 2017, 9: 181
|
1 |
潘相相. 钠冷快堆蒸汽发生器主材研究进展 [J]. 世界有色金属, 2017, 9: 181
|
2 |
Guidez J, Martin L, Chetal S C, et al. Lessons Learned from Sodium-Cooled Fast Reactor Operation and Their Ramifications for Future Reactors with Respect to Enhanced Safety and Reliability [J]. Nucl. Technol., 2017, 164(2): 207
|
3 |
Li X D, Shang C J, Han C C, et al. Influence of necklace-type M-A constituent on impact toughness and fracture mechanism in the heat affected zone of X100 pipeline steel [J]. Acta Metall. Sin., 2016, 52(9): 1025
|
3 |
李学达, 尚成嘉, 韩昌柴等. X100管线钢焊接热影响区中链状M-A组元对冲击韧性和断裂机制的影响 [J].金属学报, 2016, 52(9): 1025
|
4 |
Mohseni P, Solberg J K, Karlsen M, et al. Cleavage Fracture Initiation at M-A Constituents in Intercritically Coarse-Grained Heat-Affected Zone of a HSLA Steel [J]. Metall. Mater. Trans. A, 2013, 45(1): 384
|
5 |
Li Y, Baker T N. Effect of morphology of martensite-austenite phase on fracture of weld heat affected zone in vanadium and niobium microalloyed steels [J]. Mater. Sci. Tech., 2013, 26(9): 1029
|
6 |
Li X D, Ma X P, Subramanian S V, et al. Influence of prior austenite grain size on martensite-austenite constituent and toughness in the heat affected zone of 700 MPa high strength linepipe steel [J]. Mat. Sci. Eng. A, 2014, 616: 141
|
7 |
Li X D, Fan Y R, Ma X P, et al. Influence of martensite-austenite constituents formed at different intercritical temperatures on toughness [J]. Mater. Design., 2015, 67: 457
|
8 |
Bayraktar E, Kaplan D. Mechanical and metallurgical investigation of martensite-austenite constituents in simulated welding conditions [J]. J. Mater. Process. Tech., 2004, 153: 87
|
9 |
Moeinifar S, Kokabi A H, Hosseini H R M. Effect of tandem submerged arc welding process and parameters of Gleeble simulator thermal cycles on properties of the intercritically reheated heat affected zone [J]. Mater. Design., 2011, 32(2): 869
|
10 |
Li Y, Crowther D N, Green M J W, et al. The effect of vanadium and niobium on the properties and microstructure of the intercritically reheated coarse grained heat affected zone in low carbon microalloyed steels [J]. Isij. Int 41., 2001, 41(1): 46
|
11 |
Kiani-Rashid A R. Effect of aluminum on stability of retained austenite in bainitic malleable cast iron [J]. Met. Sci. Heat. Treat., 2011, 53(7): 322
|
12 |
Miyata K, Sawaragi Y. Effect of Mo and W on the phase stability of precipitates in low Cr heat resistant steels [J]. Isij. International., 2001, 41(3): 281
|
13 |
Avazkonandeh-Gharavol M H, Haddad-Sabzevar M, Haerian A. Effect of chromium content on the microstructure and mechanical properties of multipass MMA, low alloy steel weld metal [J]. J. Mater. Sci., 2009, 44(1): 186
|
14 |
Lan L Y, Qiu C L, Song H Y, et al. Correlation of martensite–austenite constituent and cleavage crack initiation in welding heat affected zone of low carbon bainitic steel [J]. Mater. Lett., 2014, 125: 86
|
15 |
Davis C L, King J E. Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone: Part I. Fractographic evidence [J]. Metall. Mater. Trans. A., 1994, 25(3): 563
|
16 |
You Y, Shang C J, Chen L, et al. Investigation on the crystallography of the transformation products of reverted austenite in intercritically reheated coarse grained heat affected zone [J]. Mater. Design., 2013, 43: 485
|
17 |
Nuruddin I K. Effect of welding thermal cycles on the heat affected zone microstructure and toughness of multi-pass welded pipeline steels [D]. UK: Cranfield University, 2012
|
18 |
Takayama N, Miyamoto G, Furuhara T. Chemistry and three-dimensional morphology of martensite-austenite constituent in the bainite structure of low-carbon low-alloy steels [J]. Acta Mater., 2018, 145: 154
|
19 |
Zhu J L, Liu S F, Cao Y, et al. Effect of cross rolling cycle on the deformed and recrystallized gradient in high-purity tantalum plate [J]. Acta Metall. Sin., 2019, 8(55): 1019
|
19 |
祝佳林, 刘施峰, 曹宇等. 交叉轧制周期对高纯Ta板变形及再结晶梯度的影响 [J]. 金属学报, 2019, 55(8): 1019
|
20 |
Wright S I, Nowell M M, Field D P. A review of strain analysis using electron backscatter diffraction [J]. Microsc. Microanal., 2011, 17(3): 316
|
21 |
Li X D, Shang C J, Ma X P, et al. Structure and crystallography of martensite-austenite constituent in the intercritically reheated coarse-grained heat affected zone of a high strength pipeline steel [J]. Mater. Charact., 2018, 138: 107
|
22 |
Cui Z Q, Qin Y C. Metallurgy and Heat Treatment [M]. Beijing: China Machine Press, 2000
|
22 |
崔忠圻, 覃耀春. 金属学与热处理 [M]. 北京: 机械工业出版社, 2000
|
23 |
Ritchie R O, Knott J F, Rice J. Relationship between critical tensile stress and fracture toughness in mild steel [D]. USA: Brown University, 1973
|
24 |
Griffiths J R, Owen D R J. An elastic-plastic stress analysis for a notched bar in plane strain bending [J]. J. Mech. Phys. Solids., 1971, 19(6): 419
|
25 |
Zhou Z L, Liu S H. Influence of local brittle zone on the fracture toughness of high-strength low-alloyed multipass weld metals [J]. Acta Metall. Sin., 2009, 11(2): 87
|
26 |
Liu Z C, Ren H P. Bainite and Bainite Transformation [M]. Beijing: Metallurgical Industry Press, 2009
|
26 |
刘宗昌, 任慧平. 贝氏体与贝氏体相变 [M]. 北京: 冶金工业出版社, 2009
|
27 |
Keehan E, Karlsson L, Andrén H O, et al. New developments with C-Mn-Ni high strength steel weld metals, Part A. Microstructure [J]. Weld. J., 2006, 85(9): 200
|
28 |
Brooksbank D. Tessellated stresses associated with some inclusions in steel [J]. J. Iron. Steel. Inst., 1969, 207: 474.
|
29 |
Klueh R L, Alexander D J, Kenik E A. Development of low-chromium, chromium-tungsten steels for fusion [J]. J. Nucl. Mater., 1995, 227(1): 11
|
30 |
Zhao J W, Jiang Z Y, Kim J S, et al. Effects of tungsten on continuous cooling transformation characteristics of microalloyed steels [J]. Mater. Design., 2013, 49: 252
|
31 |
Zajac S, Schwinn V, Tacke K H. Characterisation and quantification of complex bainitic microstructures in high and ultra-high strength linepipe steels [J]. Mater. Sci. Forum, 2005, 500: 387
|
32 |
Saeidi N, Ekrami A. Impact properties of tempered bainite-ferrite dual phase steels [J]. Mat. Sci. Eng. A., 2010, 527(21): 5575
|
33 |
Madej M. Tungsten carbide as an addition to high speed steel based composites [J]. Tungsten Carbide-Processing and Applications., 2012: 57
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|