Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (11): 857-865    DOI: 10.11901/1005.3093.2021.010
  研究论文 本期目录 | 过刊浏览 |
终冷温度对高强度抗震钢筋组织和性能的影响
曾泽芸1, 李长荣1,2(), 黎志英1,2, 黄胜1, 黎世旺1, 尤景田1
1.贵州大学材料与冶金学院 贵阳 550025
2.贵州省冶金工程与过程节能重点实验室 贵阳 550025
Effect of Final Temperature of Cooling on Microstructure and Properties of Aseismic High-strength Steel Rebar
ZENG Zeyun1, LI Changrong1,2(), LI Zhiying1,2, HUANG Sheng1, LI Shiwang1, YOU Jingtian1
1.School of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
2.Key Laboratory of Metallurgical Engineering and Process Energy Conservation of Guizhou Province, Guiyang 550025, China
引用本文:

曾泽芸, 李长荣, 黎志英, 黄胜, 黎世旺, 尤景田. 终冷温度对高强度抗震钢筋组织和性能的影响[J]. 材料研究学报, 2021, 35(11): 857-865.
Zeyun ZENG, Changrong LI, Zhiying LI, Sheng HUANG, Shiwang LI, Jingtian YOU. Effect of Final Temperature of Cooling on Microstructure and Properties of Aseismic High-strength Steel Rebar[J]. Chinese Journal of Materials Research, 2021, 35(11): 857-865.

全文: PDF(2425 KB)   HTML
摘要: 

用Gleeble-3800热模拟机进行高强度抗震钢筋的热模拟实验,使用金相显微镜(OM)、场发射扫描电子显微镜(SEM)、高分辨透射电子显微镜(TEM)和万能拉伸试验机等手段表征其微观结构、第二相、力学性能和断口形貌,研究了终冷温度对高强度抗震钢筋的组织和性能的影响并揭示微合金元素细化晶粒的机理。结果表明:实验钢的显微组织主要为铁素体和珠光体,随着终冷温度的降低铁素体晶粒细化。终冷温度为650℃时实验钢中分布在铁素体基体上的主要析出相 (Nb, Ti, V)C和(V, Nb, Ti)C的平均粒径约为2 nm和5 nm。随着终冷温度的降低实验钢的抗拉强度和屈服强度都增加,终冷温度为650℃时其抗拉强度和屈服强度分别为638.75 MPa和467 MPa,强屈比为1.37。在不同终冷温度实验钢的拉伸断口主要为等轴韧窝,其尺寸和深度不同。

关键词 金属材料高强度抗震钢筋终冷温度微观结构力学性能    
Abstract

The thermal simulation test of an experimental aseismic high strength steel was conducted by Gleeble-3800 thermal simulator, then its microstructure, second phase, mechanical properties and fracture morphology were characterized by metallographic microscopy (OM), field emission scanning electron microscopy (SEM), high resolution transmission electron microscopy (TEM) and universal tensile testing machine. Meanwhile, the effect of final temperature of cooling on the microstructure and properties of the steel was carefully examined, and the grain refinement mechanism induced by microalloying elements was revealed. The results show that: the microstructure of the steel consists mainly of phases ferrite and pearlite, and the ferrite grain was refined with the decrease of the final temperature of cooling. The average diameter of precipitated carbides (Nb, Ti, V) C and (V, Nb, Ti) C distributed in the ferrite matrix of the steel is about 2 nm and 5 nm respectively for the final temperature of cooling 650℃. The tensile strength and yield strength of the steel increase with the decrease of the final temperature of cooling. When the final temperature of cooling is 650℃, the corresponding tensile strength and yield strength are 638.75 MPa and 467 MPa, respectively, and the strength/yield ratio is 1.37. The tensile fractured surface of steels, which have been experienced thermal simulation tests with different final temperatures of cooling, exhibits mainly equiaxed dimples of different sizes and depths.

Key wordsmetallic materials    high-strength anti-seismic rebar    final cooling temperature    microstructure    mechanical properties
收稿日期: 2021-01-18     
ZTFLH:  TG142.1  
基金资助:国家自然科学基金(52074095)
作者简介: 曾泽芸,男,1995年生,硕士生
CSiMnPSNbVTiCeq
0.180.351.320.0190.0120.0200.0650.0080.51
表1  实验钢锭的化学成分
图1  实验钢的热模拟工艺
图2  不同终冷温度5道次热模拟轧制后实验钢的金相显微组织
Final cooling temperatureFerrite/%Pearlite/%Ferrite average grain size/mmGrain size grade
650℃55450.00778511
700℃58420.0113910
750℃60400.015959
表2  实验钢的微观组织比例及晶粒统计
图3  终冷温度为650℃的实验钢中(Nb, Ti, V)C析出物及其EDS图像、高分辨率晶格条纹相和电子衍射区
图4  终冷温度为650℃的实验钢中(V, Nb, Ti)C析出物及其EDS图像、高分辨率晶格条纹相和电子衍射区
图5  实验钢中析出物的比例分布
图6  在5道次热模拟条件下实验钢拉伸的应力-应变曲线
Final cooling temperatureReL/MPaRm/MPaRm/ReLA/%
650℃638.754671.3713
700℃605.584471.3515
750℃567.124121.3712
表3  实验钢的拉伸性能
图7  5道次热模拟轧制终冷温度不同的实验钢的拉伸断口形貌
Phases in steelRelative density/g·cm-3
Fe7.874
NbC8.47
TiC4.93
VC5.77
表4  钢中Fe和析出相MC的相对密度
Precipitation650℃700℃750℃
(Nb, Ti, V)C0.22480.21430.1130
(V, Nb, Ti)C0.21320.20210.1045
表5  终冷温度不同的实验钢中(Nb、V、Ti)C沉淀的体积分数
1 Yang Y Q, Wang Q J, Du Z Z, et al. Research status of high strength anti vibration reinforcement [J]. Materials Reports, 2015, 29 (10): 101
1 杨雨晴, 王庆娟, 杜忠泽等. 高强度抗振钢筋的研究现状 [J]. 材料导报, 2015, 29 (10): 101
2 Yang C F. The latest technical progress of high strength building reinforcement [J]. Iron and Steel, 2010, 45 (11): 1
2 杨才福. 高强度建筑钢筋的最新技术进展 [J]. 钢铁, 2010, 45 (11): 1
3 Yu M S, Sheng G M, Zhan S Y. Research status of seismic reinforcement [J]. Materials Reports, 2010, 24 (15): 454
3 于孟山, 盛光敏, 詹苏宇. 抗震钢筋研究现状 [J]. 材料导报, 2010, 24 (15): 454
4 Yang G W, Sun X J, Yong Q L, et al. Austenite grain refinement and isothermal growth behavior in a low carbon vanadium microalloyed steel [J]. J. Iron Steel Res. Int., 2014, 21: 757
5 Mao X P, Chen Q L, Sun X J. Metallurgical interpretation on grain refinement and synergistic effect of Mn and Ti in Ti-microalloyed strip produced by TSCR [J]. J. Iron Steel Res. Int., 2014, 21: 30
6 Yang G W, Sun X J, Li Z D, et al. Effect of vanadium on the microstructure and mechanical properties of a high strength low alloy martensite steel [J]. Mater. Des., 2013, 50: 102
7 He X L, Yang G W, Mao X P, et al. Effect of Nb on the continuous cooling transformation rule and microstructure, mechanical properties of Ti-Mo bearing microalloyed steel [J]. Acta Metall. Sin., 2017, 53: 648
8 Liu S X, Chen Y, Liu G Q, et al. Effect of intermediate cooling on precipitation behavior and austenite decomposition of V-Ti-N steel for nonquenched and tempered oil-well tubes [J]. Mater. Sci. Eng. A, 2008, 485: 492
9 Zhang X, Cai Q, Zhou G, et al. Microstructure and mechanical properties of V-Ti-N microalloyed steel used for fracture splitting connecting rod [J]. J. Mater. Sci., 2011, 46: 1789
10 Funakawa Y, Shiozaki T, Tomita K, et al. Development of high strength hot-rolled sheet consisting of ferrite and nanometer-sized carbides [J]. ISIJ Int., 2004, 44: 1945
11 Patra P K, Sam S, Singhai M, et al. Effect of coiling temperature on the microstructure and mechanical properties of hot-rolled Ti-Nb microalloyed ultra high strength steel [J]. Trans. Indian Inst. Met., 2017, 70: 1773
12 Hu J, Du L X, Wang J J, et al. Microstructures and mechanical properties of a new as-hot-rolled high-strength DP steel subjected to different cooling schedules [J]. Metall. Mater. Trans. A, 2013, 44: 4937
13 Liu Q D, Zhao S J. Comparative study on austenite decomposition and Cu precipitation during continuous cooling transformation [J]. Metall. Mater. Trans. A, 2013, 44: 163
14 Wang X, Du L, Xie H, et al. Effect of deformation on continuous cooling phase transformation behaviors of 780 MPa Nb-Ti ultra-high strength steel [J]. Steel Res. Int., 2011, 82
15 Yuan X Q, Liu Z Y, Jiao S H, et al. The onset temperatures of γ to α-phase transformation in hot deformed and non-deformed Nb micro-alloyed steels [J]. ISIJ Int., 2006, 46: 579
16 Mecozzi M G, Sietsma J, Zwaag S V D. Analysis of γα transformation in a Nb micro-alloyed C-Mn steel by phase field modeling [J]. Acta Mater., 2006, 54: 1431
17 Courtois E, Epicier T, Scott C. Characterisation of niobium carbide and carbonitride evolution within ferrite: contribution of transmission electron microscopy and advanced associated techniques [J]. Mater. Sci. Forum., 2005, 500: 669
18 Aviation Equipment Failure Analysis Center of the Ministry of Aerospace Industry. Fracture Analysis and Map of Metal Materials [M]. Beijing: Science Press, 1991
18 航空航天工业部航空装备失效分析中心. 金属材料断口分析及图谱 [M]. 北京: 科学出版社, 1991
19 Zhang Z H, Liu Y, Zhou Y N, et al. Effect of precipitation of (Ti, V) N and V (C, N) secondary phases on mechanical properties of V and N microalloyed 1Cr steels [J]. Mater. Sci. Eng. A, 2018, 738: 203
20 Pickering B. Physical Metallurgy snd the Design of Steels [M]. Applied Science Publishers Ltd, London, 1978
21 Gladman T. The Physical Metallurgy of Microalloyed Steels [M]. The Institute of Materials, London, 1997
22 Misra R, Nathani H, Hartmann J, et al. Microstructure evolution in a new 770MPa hot rolled Nb-Ti microalloyed steel [J]. Mater. Sci. Eng. A, 2005, 394: 339
23 Misra R, Weatherly C, Hartmann E, et al. Ultrahigh strength hot rolled microalloyed steel: microstructural aspects of development [J]. Mater. Sci. Tech., 2001, 17: 1119
24 Uenishi A, Teodosiu C. Solid solution softening at high strain rates in Si and/or Mn added interstitial free steels [J]. Acta Mater., 2003, 51: 4437
25 Iza-Mendia A, Gutierrez I. Generalization of the existing relations between microstructure and yield stress from ferrite-pearlite to high strength steels [J]. Mater. Sci. Eng. A, 2013, 561: 40
26 Gutierrez I, Altuna M A. Work-hardening of ferrite and microstructure-based modelling of its mechanical behavior under tension [J]. Acta Mater., 2008, 56: 4682
27 Altuna M A, Iza-Mendia A, Gutierrez I. Precipitation of Nb in ferrite after austenite conditioning, Part II: strengthening contribution in high-strength low-allow (HSLA) steels [J]. Metall. Mater. Trans. A, 2012, 43: 4571
28 Eghbali B, Abdollah A. Influence of deformation temperature on the ferrite grain refinement in a low carbon Nb-Ti microlloyed steel [J]. J. Mater. Process. Tech., 2006, 180: 44
29 Hall E O. The deformation and ageing of mild steel: III Discussion of results [J]. Proc. Phys. Soc. B, 1951, 64: 747
30 Petch N J. The cleavage strength of polycrystals [J]. J. Iron Steel Inst, 1953, 174: 25
31 Isasti N, Jorge-Badiola D, Taheri M L, et al. Microstructural characterization and precipitation characterization in Nb-Mo microalloyed steels: estimation of the contributions to the strength [J]. Met. Mater. Int., 2014, 20: 807
32 Nikolaou J, George D. Impact toughness of reinforcing steels produced by (i) the tempcore process and (ii) microlloying with vanadium [J]. Int. J. Impact. Eng., 2005, 31: 1065
33 Pavlina E J, Speer J G, Tyne C J V. Equilibrium solubility products of molybdenum carbide and tungsten carbide in iron [J]. Scr. Mater., 2012, 66: 243
34 Gladman T. Precipitation hardening in metals [J]. metal, Sci. J., 1999, 15: 30
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.