Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (11): 835-842    DOI: 10.11901/1005.3093.2021.009
  研究论文 本期目录 | 过刊浏览 |
溅射沉积富镁Mg3Bi2薄膜的热电性能
宋贵宏1(), 李秀宇1, 李贵鹏1, 杜昊2, 胡方1
1.沈阳工业大学材料科学与工程学院 沈阳 110870
2.广东腐蚀科学与技术创新研究院 广州 510530
Thermoelectric Properties of Mg-rich Mg3Bi2 Films Prepared by Magnetron Sputtering
SONG Guihong1(), LI Xiuyu1, LI Guipeng1, DU Hao2, HU Fang1
1.School of Materials Science and Technology, Shenyang University of Technology, Shenyang 110870, China
2.Institute of Corrosion Science and Technology of Guangzhou, Guangzhou 510530, China
引用本文:

宋贵宏, 李秀宇, 李贵鹏, 杜昊, 胡方. 溅射沉积富镁Mg3Bi2薄膜的热电性能[J]. 材料研究学报, 2021, 35(11): 835-842.
Guihong SONG, Xiuyu LI, Guipeng LI, Hao DU, Fang HU. Thermoelectric Properties of Mg-rich Mg3Bi2 Films Prepared by Magnetron Sputtering[J]. Chinese Journal of Materials Research, 2021, 35(11): 835-842.

全文: PDF(5176 KB)   HTML
摘要: 

采用Mg-Bi化合物靶和金属Mg靶用磁控溅射技术制备富Mg的Mg3Bi2薄膜并表征其相组成、表面和截面形貌,研究了薄膜的热电性能。结果表明,这种富Mg薄膜由Mg3Bi2相和金属Mg相组成且Mg3Bi2结构中有Mg空位,具有p型导电特征,Seebeck系数为正值。随着温度的提高,富Mg薄膜的电阻率先略微提高而后显著降低;随着Mg含量的提高富Mg薄膜的电阻率逐渐提高,但是Mg含量达到一定数值后电阻率又急剧下降。Mg含量较低时Seebeck系数随着温度的提高开始时略下降随后很快增大,达到最大值后又很快降低;Mg含量较高时随着温度的提高Seebeck系数开始时略增大,随后缓慢下降。除了Mg含量较低的样品,在温度相同的条件下随着Mg含量的提高薄膜的Seebeck系数值增大,但是Mg含量过高时Seebeck系数值迅速降低,达到普通金属材料Seebeck系数的数量级。这种富Mg薄膜的功率因子,受Seebeck系数和电阻率制约。

关键词 无机非金属材料热电材料Mg3Bi2薄膜Seebeck系数电阻率磁控溅射    
Abstract

Mg-rich Mg3Bi2 thin films were prepared by magnetron sputtering with dual targets of Mg-Bi intermetallic compound and metal Mg. The phase composition, surface and cross-sectional morphology as well as thermoelectric properties of the thin films were characterized. The results show that the Mg-rich thin film is composed of phases Mg3Bi2 phase and Mg. There exists Mg vacancies within the phase Mg3Bi2, therefore, which presents characteristics of p-type conductivity with a positive Seebeck coefficient. With the increase of temperature, the resistance of Mg-rich Mg3Bi2 films increases slightly at first and then decreases significantly. With the increase of Mg content, the resistivity of Mg-rich Mg3Bi2 films gradually increases, but when the Mg content reaches a certain value, the resistivity drops sharply. When the Mg content was low, the Seebeck coefficient first decreased slightly and then increased rapidly with the increase of temperature, and then decreased rapidly after reaching the maximum value. When the Mg content was high, the Seebeck coefficient increased slightly at first and then decreased slowly with the increase of temperature. Except for the samples with low Mg content, the Seebeck coefficient of the films increases with the increase of Mg content at the same temperature, but the Seebeck coefficient decreases rapidly when the Mg content is too high, reaching more or less a level of the same order of magnitude of the Seebeck coefficient of common metal materials. Nevertheless, the power factor of this Mg-rich Mg3Bi2 film is controlled by the Seebeck coefficient and the resistivity.

Key wordsinorganic nonmetallic materials    thermoelectric materials    Mg3Bi2 films    Seebeck coefficient    Resistivity    magnetron sputtering
收稿日期: 2021-01-18     
ZTFLH:  O614.22  
基金资助:国家自然科学基金项目(51772193)
作者简介: 宋贵宏,男,1965年生,博士
图1  富镁薄膜的XRD谱
图2  Mg-Bi的二元相图
Sample

Mg target

sputtering time/s

Mg (%, atom fraction)Bi (%, atom fraction)Residual metal Mg (%, atom fraction)
S160 s79.8920.1149.72
S290 s83.1516.8557.87
S3120s90.949.0677.35
S4150 s96.123.8890.30
表1  沉积薄膜的化学成分
图3  富镁薄膜表面的形貌。
图4  不同沉积时间富镁薄膜的横截面形貌
图5  富镁薄膜的表面形貌和元素面扫描
图6  富镁薄膜的电阻率与温度关系以及电导率与温度倒数的关系
图7  富镁薄膜的Seebeck系数与温度的关系
图8  富镁薄膜的功率因子与温度的关系
1 Zhang X, Liu H, Lu Q, et al. Enhanced thermoelectric performance of Mg2Si0.4Sn0.6 solid solutions by in nanostructures and minute Bi-doping [J]. Appl. Phys. Lett., 2013, 103, 063901-1-4
2 Li G, Song G, Hu F, et al. Structure and thermoelectric properties of Ag-doped SnSe thin films deposited by magnetron sputtering [J]. Chin. J. Mater. Res., 2020, 38(8): 561
2 李贵鹏, 宋贵宏, 胡 方等. 溅射沉积掺Ag的SnSe薄膜的微结构和热电性能 [J]. 材料研究学报, 2020, 38(8): 561
3 Zhu Z, Zhang Y, Song H, et al. Enhancement of thermoelectric performance of Cu1.98Se by K doping [J]. Appl. Phys. A, 2018, 124(12): 747
4 Liu K, Xia S. Recent progresses on thermoelectric Zintl phases: structures, materials and optimization [J]. J. Solid State Chem., 2019, 270: 252
5 Chandran A K, Gudelli V K, Sreeparvathy P C,et al. Structural and thermoelectric properties of zintl-phase CaLiPn (Pn=As, Sb, Bi) [J]. J. Solid State Chem., 2016, 243: 198
6 Zevalkink A, Pomrehn G, Takagiwa Y, et al. Thermoelectric properties and electronic structure of the Zintl-phase Sr3AlSb3 [J]. ChemSusChem, 2013, 6(12): 2316
7 Hu Q, Zhu Z, Zhang Y, et al. Remarkably high thermoelectric performance of Cu2-xLixSe bulks with nanopores [J]. J. Mater. Chem. A, 2018, 6, 23417
8 Shu R, Zhou Y, Wang Q, et al. Mg3+δSbxBi2-x Family: A Promising Substitute for the State-of-the-Art n-Type Thermoelectric Materials near Room Temperature [J]. Adv. Funct. Mater., 2019, 4(5): 1807235
9 Zhang J, Song L, Pedersen S H, et al. Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands [J]. Nat. Commun., 2017, 8(1): 13901
10 Zhu Q, Song S, Zhu H, et al. Realizing high conversion efficiency of Mg3Sb2-based thermoelectric materials [J]. J. Power Sources, 2019, 414: 393
11 Mao J, Zhu H, Ding Z, et al. High thermoelectric cooling performance of n-type Mg3Bi2-based materials [J]. Science, 2019, 365(6452): 495
12 Toshima N. Recent progress of organic and hybrid thermoelectric materials [J]. Synthetic Metals, 2017, 225: 3
13 Ponnambalam V, Morelli D T. On the Thermoelectric Properties of Zintl Compounds Mg3Bi2-x Pnx (Pn=P and Sb) [J]. J. Electron. Mater., 2013, 42(7): 1307
14 Bhardwaj A, Rajput A, Shukla A K, et al. Mg3Sb2-based Zintl compound: a non-toxic, inexpensive and abundant thermoelectric material for power generation [J]. RSC Advances, 2013, 3(22): 8504
15 Pan Y, Yao M Y, Hong X C, et al. Mg3(Bi,Sb)2 single crystals towards high thermoelectric performance [J]. Energy Environ. Sci., 2020, 13(6): 1717
16 Song G, Liu Q, Du H, et al. The thermoelectric properties of the Mg2(Sn,Si) films by magnetron sputtering with different microstructure [J]. Surf. Coat. Technol., 2019, 359: 252
17 Song G, Li G, Liu Q, et al. Microstructure and electric conductance of Mg2(Sn,Si) thin films by sputtering [J]. Acta Metallurgica Sinica, 2019, 55(11): 1469
17 宋贵宏, 李贵鹏, 刘倩男等. 溅射沉积Mg2(Sn,Si)薄膜组织结构与导电性能 [J]. 金属学报, 2019, 55(11): 1469
18 Song L, Zhang J, Iversen B B. Simultaneous improvement of power factor and thermal conductivity via Ag doping in p-type Mg3Sb2 thermoelectric materials [J]. J. Mater. Chem. A, 2017, 5(10): 4932
19 Song G, Li G, Li X, et al. The microstructure and thermoelectric properties of the Mg2(Sn, Si, Bi) films containing excess metal Mg phase [J]. Thin Solid Films, 2020, 713: 138322
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[9] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 单位摇, 王永利, 李静, 熊良银, 杜晓明, 刘实. 锆合金表面Cr基涂层的耐高温氧化性能[J]. 材料研究学报, 2022, 36(9): 699-705.
[14] 张鹏, 黄东, 张福全, 叶崇, 伍孝, 吴晃. 中间相沥青基碳纤维石墨化度对Cf/Al界面损伤的影响[J]. 材料研究学报, 2022, 36(8): 579-590.
[15] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.