Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (9): 691-696    DOI: 10.11901/1005.3093.2020.111
  研究论文 本期目录 | 过刊浏览 |
微晶和氢键双增强水凝胶AG/PVA/CB[7]的制备和性能
杨琴(), 赵卫杰, 赵娜, 王若迪, 陈诚
西安建筑科技大学化学与化工学院 西安 710055
Preparation and Properties of a Novel AG/PVA/CB[7] Hydrogel Reinforced by Microcrystalline and Hydrogen Bonds
YANG Qin(), ZHAO Weijie, ZHAO Na, WANG Ruodi, CHEN Cheng
School of Chemistry and Chemical Engineering, Xi 'an University of Architecture and Technology, Xi 'an 710055, China
引用本文:

杨琴, 赵卫杰, 赵娜, 王若迪, 陈诚. 微晶和氢键双增强水凝胶AG/PVA/CB[7]的制备和性能[J]. 材料研究学报, 2020, 34(9): 691-696.
Qin YANG, Weijie ZHAO, Na ZHAO, Ruodi WANG, Cheng CHEN. Preparation and Properties of a Novel AG/PVA/CB[7] Hydrogel Reinforced by Microcrystalline and Hydrogen Bonds[J]. Chinese Journal of Materials Research, 2020, 34(9): 691-696.

全文: PDF(8098 KB)   HTML
摘要: 

以天然高分子琼脂糖(AG)为第一物理交联网络、聚乙烯醇(PVA)为第二物理交联网络、七元瓜环(CB[7])为交联剂,制备了双网络AG/PVA/CB[7]水凝胶。使用SEM、FT-IR和XRD等手段表征AG/PVA/CB[7]水凝胶的形貌、结构以及交联方式,研究了这种水凝胶的力学性能、溶胀性能和宏观自愈性能。结果表明:这种凝胶具有高强度和自愈性,高分子链之间通过氢键和微晶共同交联使其机械性能提高;该凝胶的力学性能随着冷冻-解冻次数的增加而提高,交联剂CB[7]的加入也使其力学性能提高,循环5次后其拉伸强度为0.37 MPa,杨氏模量为 0.23 MPa,平衡溶胀率为140%。

关键词 高分子材料自愈水凝胶结构表征生物相容性微晶交联    
Abstract

A novel dual-network hydrogel AG/PVA/CB[7] was prepared with natural polymer agarose (AG) as the first physical crosslinking network, polyvinyl alcohol (PVA) as the second physical crosslinking network, and cucurbituril[7] (CB[7]) as the crosslinking agent. The morphology, structure, crystallinity and crosslinking mode of the AG/PVA/CB[7] hydrogel were characterized by SEM, FT-IR and XRD. The mechanical properties, swelling properties and re-healing properties of the hydrogel were investigated. The results show that the hydrogel presents high strength and re-healing properties. The mechanical properties of the hydrogel may be enhanced by cross-linking the polymer chains with hydrogen bonds and microcrystals. The mechanical properties of the hydrogel were not only increased with the increase of freeze-thaw times but also improved by the addition of crosslinking agent CB[7]. After 5 freeze-thaw cycles, the hydrogel presents tensile strength of 0.37 MPa, young's modulus of 0.23 MPa and equilibrium swelling rate of 140%.

Key wordspolymer materials    self-healing hydrogel    structural characterization    biocompatibility    microcrystalline crosslinking
收稿日期: 2020-04-13     
ZTFLH:  TQ427.26  
基金资助:陕西省自然科学基金(2019JM-541)
作者简介: 杨琴,女,1974年生,副教授,博士
图1  AG/PVA/CB[7]水凝胶的SEM照片
图2  PVA、AG/PVA和AG/PVA/CB[7]水凝胶的红外光谱图
图3  AG/PVA/CB[7]水凝胶的XRD谱
图4  AG/PVA/CB[7]水凝胶的结构示意图
图5  PVA、AG/PVA和AG/PVA/CB[7]水凝胶的应力-应变曲线
图6  不同冷冻-解冻次数AG/PVA/CB[7]水凝胶力的应力-应变曲线
Freezing-tdawing times123456
Crosslink density /×10-4 mol·cm-30.932.94.56.67.26.4
表1  AG/PVA/CB[7]水凝胶的交联密度
图7  PVA/AG水凝胶的自愈合过程
图8  PVA/AG/CB[7]水凝胶自愈合过程
图9  温度对AG/PVA/CB[7]水凝胶溶胀性能的影响
[1] Yazdanpanah A, Tahmasbi M, Amoabediny G, et al. Fabrication and characterization of electrospun poly-L-lactide/gelatin graded tubular scaffolds: Toward a new design for performance enhancement in vascular tissue engineering [J]. Prog. Nat. Sci.: Mater. Int.l, 2015, 25(5): 405
[2] Li M, Gu Q, Chen M, et al. Controlled delivery of icariin on small intestine submucosa for bone tissue engineering [J]. Mater. Sci. Eng., C, 2, 71: 260
[3] Shin M H, Lee D Y, Wohlgemuth G, et al. Global metabolite profiling of agarose degradation by saccharophagus degradans [J]. New Biotechnol., 2010, 27(2): 156
[4] Scionti G, Moral M, Toledano M, et al. Effect of the hydration on the biomechanical properties in a fibrin-agarose tissue-like model [J]. J. Biomed. Mater. Res., Part A, 2014, 102(8): 2573
[5] Sarem M, Moztarzadeh F, Mozafari M. How can genipin assist gelatin/carbohydrate chitosan scaffolds to act as replacements of load-bearing soft tissues [J]. Carbohydr. Polym., 2013, 93(2): 635
pmid: 23499106
[6] Cecilia A, Baecker A, Hamann E, et al. Optimizing structural and mechanical properties of cryogel scaffolds for use in prostate cancer cell culturing [J]. Mater. Sci. Eng., C, 2017, 71: 465
[7] Fischer K M, Scott T E, Browe D P, et al. Hydrogels for skeletal muscle regeneration [J]. Regener. Eng. Transl. Med., 2020: 1
[8] Tsutsui T W. Dental pulp stem cells: advances to applications [J]. Stem Cells Cloning: Adv. Appl., 2020, 13: 33
[9] Lopez-Heredia M A, Agata T, Mendes A C, et al. Bioinspired, biomimetic, double enzymatic mineralization of hydrogels for bone regeneration with calcium carbonate [J]. Mater. Lett., 2017, 190: 13
[10] Awadhiya A, Tyeb S, Rathore K, et al. Agarose bioplastic based drug delivery system for surgical and wound dressings [J]. Eng. Life Sci., 2017, 17(2): 204
doi: 10.1002/elsc.201500116 pmid: 32624768
[11] Oreffo R, Cidonio G, Cooke M, et al. Printing bone in a gel: using nanocomposite bioink to print functionalised bone scaffolds [J]. Mater. Today, 2019, 4: 100028
[12] Dekosky B J, Dormer N H, Ingavle G C, et al. Hierarchically designed agarose and poly(ethylene glycol) interpenetrating network hydrogels for cartilage tissue engineering [J]. Tissue Eng., Part C, 2010, 16(6): 1533
[13] Yan K, Xu F Y, Li S H, et al. Ice-templating of chitosan/agarose porous composite hydrogel with adjustable water-sensitive shape memory property and multi-staged degradation performance [J]. Colloids Surf., B,2020,190:110907
[14] Yang Q, Lv J. A pH-responsive self-healing gel with cross-linking of cucurbituril(CB[n]) via hydrogen bonding [J]. Chem. Lett., 2018, 47(2): 192
[15] Yang Q, Zhao N, Fang C J, et al. preparation and properties of high elastic self-healing hydrogel (C3H5O)1CB [7]/PAA [J]. Chin. J. Chem. Eng., 2018, 69(12): 5326
[15] (杨琴, 赵娜, 房春娟等. 高弹性自愈水凝胶(C3H5O)1CB[7]/PAA的制备及性能 [J]. 化工学报, 2018, 69(12): 5326)
[16] Yang Q, Fang C J, Zhao N, et al. self-healing and swelling kinetics of new polyacrylic acid hydrogels [J]. Chin. J. Mater. Res., 2018, 32(8): 625
[16] (杨琴, 房春娟, 赵娜等. 新型聚丙烯酸水凝胶的自愈及其溶胀动力学 [J].材料研究学报, 2018, 32(8): 625)
[17] Bi Q, Hu Y P, Yang Q, et al. A two-step approach for cucurbit[n]uril compound separating by water and hydrochloric acid [J]. Chin. J. Org. Chem., 2007, 27(7): 880
[17] (毕强, 胡英鹏, 杨琴等. 水—盐酸两步分离瓜环混合物 [J]. 有机化学, 2007, 27(7): 880)
[18] Yang Q, Li X L, Jiang Y, et al. Microwave synthesis, charaterisation and electrochemical property of cucurbit[n]urils [J]. Mater. Res. Innovations, 2014, 18(4): 280
[19] Xiang Y, Peng Z, Chen D. A new polymer/clay nano-composite hydrogel with improved response rate and tensile mechanical properties [J]. Eur. Polym. J., 2006, 42(9): 2125
[20] Rabbi M A, Rahman M M, Minami H, et al. Biocomposites of synthetic polymer modified microcrystalline jute cellulose particles and their hemolytic behavior [J]. Cellulose, 2019, 26(16): 8713
[21] Yang J h, Xie R S, Liu T X, et al. Preparation and characterization of high-performance hydrogels based on hydrogen bonding [J]. Sci. Chin. Ser. E, 2016, 10(46): 1057
[21] (杨建海, 谢若森, 刘通秀等. 基于氢键作用的高性能水凝胶的制备与表征 [J]. 中国科学: 技术科学, 2016, 10(46): 1057)
[22] Raquel P R, Luis C R, Antonio S G, et al. Intact charge variant analysis of ziv-aflibercept by cationic exchange liquid chromatography as a proof of concept: Comparison between volatile and non-volatile salts in the mobile phase [J]. J. Pharm. Biomed. Anal.,2020, 185: 113233
doi: 10.1016/j.jpba.2020.113233 pmid: 32169790
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 杨琴, 王振, 房春娟, 王若迪, 高大航. 力学性能可控的CMC/AA/CB[8]/BET凝胶的制备及其吸附性[J]. 材料研究学报, 2022, 36(8): 628-634.
[5] 张益铭, 赵子彦, 牟娟. 添加Nb元素对TiZr基非晶复合材料性能的影响[J]. 材料研究学报, 2022, 36(6): 401-408.
[6] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[7] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[8] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[9] 李建中, 朱博轩, 王振宇, 赵静, 范连慧, 杨柯. 输尿管支架表面化学接枝镀铜涂层及其性能[J]. 材料研究学报, 2022, 36(10): 721-729.
[10] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[11] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[12] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[13] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[14] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[15] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.