Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (9): 674-682    DOI: 10.11901/1005.3093.2020.017
  研究论文 本期目录 | 过刊浏览 |
离子液体辅助纳米纤维素吸附剂的制备及其吸附性能
黄健1(), 林春香1, 陈瑞英2, 熊万永1, 温小乐1, 罗鑫1
1.福州大学环境与资源学院 福州 350108
2.福建农林大学材料工程学院 福州 350116
Ionic Liquid-assisted Synthesis of Nanocellulose Adsorbent and Its Adsorption Properties
HUANG Jian1(), LIN Chunxiang1, CHEN Ruiying2, XIONG Wanyong1, WEN Xiaole1, LUO Xin1
1. College of Environment & Resources, Fuzhou University, Fuzhou 350108, China
2. College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350116, China
引用本文:

黄健, 林春香, 陈瑞英, 熊万永, 温小乐, 罗鑫. 离子液体辅助纳米纤维素吸附剂的制备及其吸附性能[J]. 材料研究学报, 2020, 34(9): 674-682.
Jian HUANG, Chunxiang LIN, Ruiying CHEN, Wanyong XIONG, Xiaole WEN, Xin LUO. Ionic Liquid-assisted Synthesis of Nanocellulose Adsorbent and Its Adsorption Properties[J]. Chinese Journal of Materials Research, 2020, 34(9): 674-682.

全文: PDF(3150 KB)   HTML
摘要: 

以脱脂棉纤维素(Cellulose,Ce)为原料,以丙烯酸(AA)和丙烯酰胺(AM)为单体,使用酸性离子液体1-丁基-3-甲基咪唑硫酸氢盐([Bmim]HSO4)为溶剂和水解催化剂对纤维素进行水解和改性,然后对改性纤维素进行高压均质处理制备出纳米纤维素吸附剂(AA/AM-g-NC)。对AA/AM-g-NC的结构和性能进行表征,并以亚甲基蓝为吸附质研究了对AA/AM-g-NC的吸附性能。结果表明,离子液体辅助高压均质处理脱脂棉后得到纤丝交联网状结构的AA/AM-g-NC吸附剂。这种吸附剂的晶型保持了纤维素Ⅰ型结构,结晶度略有提高;AA/AM-g-NC吸附剂表面接有丙烯酸和丙烯酰胺官能团,对亚甲基蓝的吸附受pH值的影响且为自发放热过程,并符合Langmuir吸附等温式;吸附过程接近准二级动力学方程,由颗粒的内扩散和表面扩散共同控制。

关键词 有机高分子材料纳米纤维素接枝共聚吸附剂离子液体亚甲基蓝    
Abstract

Nanocellulose adsorbent (AA/AM-g-NC) from cotton linter was successfully prepared by high pressure homogenization with the assistance of an ionic liquid. The cotton linter was first swelled, hydrolyzed and grafted with acrylic acid and acrylamide in an ionic liquid (1-butyl-3-methylimidazolium hydrogen sulfate ([Bmim]HSO4)), and then further treated by high pressure homogenization and finally AA/AM-g-NC was obtained. The AA/AM-g-NC adsorbent was characterized and used as adsorbent to adsorb methylene blue. The results show that after the treatment of high pressure homogenization assisted with hydrolysis and graft in ionic liquid AA/AM-g-NC illustrated as crosslinked net with fibril. The crystalline of AA/AM-g-NC remained as cellulose Ⅰ type, with a little increase in the crystallinity. The appearance of functional group from acrylic acid and acrylamide on the AA/AM-g-NC surface was proved. The sorption process towards methylene blue was pH value dependent, spontaneous, exothermic and followed the Langmuir adsorption isotherm. And the adsorption kinetic is closer to the quasi-second order kinetic equation and controlled by both intraparticle diffusion and surface diffusion.

Key wordsorganic polymer materials    nanocellulose    graft copolymerization    adsorbent    ionic liquid    methylene blue
收稿日期: 2020-01-13     
ZTFLH:  TQ352  
基金资助:国家自然科学基金(21577018);福建省教育厅项目(JAT160059)
作者简介: 黄健,男,1982年生,博士
图1  NC和AA/AM-g-NC的SEM 照片
图2  NC及AA/AM-g-NC的TEM像
图3  Ce、NC和AA/AM-g-NC的红外光谱
图4  NC和AA/AM-g-NC的XRD谱图
图5  纳米纤维素NC和AA/AM -g-NC的XPS图谱以及N1s的高分辨图谱
图6  NC和AA/AM-g-NC处理后C1s、N1s和O1s的XPS图谱
SampleO/%C/%H/%N/%
NC51.2442.656.020.37
AA/AM-g-NC46.2144.076.093.13
表1  NC和 AA/AM -g-NC元素含量
SampleParameters of pore structure
Surface area/m2·g-1

Pore volume

/cm3·g-1

Average pore size

/nm

Ce3.3900.00366.047
NC13.040.0134.010
AA/AM-g-NC12.950.0195.834
表2  Ce、NC和AA/AM-g-NC的吸附参数
图7  Ce、NC、AA/AM-g-Ce和AA/AM-g-NC对亚甲基蓝的去除率和吸附容量对比
AdsorbentSoluteC0/mg·L-1qe(exp)/mg·L-1Ref.
NCC(T=35℃)4.802.9[16]
9.604.9
14.396.6
NCC(T=45℃)MB4.802.9
9.605.4
14.396.9
NCC(T=55℃)4.802.9
9.605.4
14.396.7
10010.41[17]
20017.24
NCC alginate hydrogel beadsMB40035.28
60050.29
80072.84
Cellulose nanowhiskers-based polyurethane foamMB5043.5[18]
表3  与文献中纳米纤维素吸附剂对亚甲基蓝吸附性能的比较
图8  pH值对AA/AM-g-NC吸附性能的影响
图9  Langmuir及Freundlich方程拟合图
Temperature/KLangmuir parametersFreundlich parameters
Q0/mg·g-1b/L·mg-1R2K1/nR2
30335.840.9820.99616.870.3110.981
31334.360.9150.99516.150.2960.990
32332.570.8290.98815.250.2840.981
表4  拟合的Langmuir和Freundlich参数
Temperature/K△G/kJ·mol-1△S/J·(mol·K)-1△H/kJ·mol-1
303-0.0459-0.0225-6.876
313-0.232-0.0212
323-0.505-0.0197
表5  热力学参数
图10  准一级动力学和准二级动力学拟合曲线
图11  颗粒内扩散反应方程曲线
Pseudo-first-order kinetic modelPseudo-second-order kinetic model
k1qeR2k2qeR2
0.03056.020.9350.001248.920.999
表6  吸附过程的动力学参数
[1] O'Connell D W, Birkinshaw C, O'Dwyer T F. Heavy metal adsorbents prepared from the modification of cellulose: A review [J]. Bioresour. Technol., 2008, 99: 6709
doi: 10.1016/j.biortech.2008.01.036 pmid: 18334292
[2] O'Connell D W, Birkinshaw C, O'Dwyer T F. A modified cellulose adsorbent for the removal of nickel(II) from aqueous solutions [J]. J. Chem. Technol. Biotechnol., 2006, 81: 1820
[3] Alila S, Boufi S. Removal of organic pollutants from water by modified cellulose fibres [J]. Ind. Crops Prod., 2009, 30: 93
[4] Paquet O, Krouit M, Bras J, et al. Surface modification of cellulose by PCL grafts [J]. Acta. Mater., 2010, 58: 792
[5] Gardner D J, Oporto G S, Mills R, et al. Adhesion and surface issues in cellulose and nanocellulose [J]. J. Adhes. Sci. Technol., 2008, 22: 545
[6] Mariano M, El Kissi N, Dufresne A. Cellulose nanocrystals and related Nanocomposites: Review of some properties and challenges [J]. J. Polym. Sci., 2014, 52B: 791
[7] Ding C X, Pan M Z. Research progress in stimuli-responsive functional materials based on cellulose nanocrystals [J]. J. Mater. Eng., 2019, 47(1): 32
[7] (丁春香, 潘明珠. 基于纤维素纳米晶体的刺激响应功能材料的研究进展 [J]. 材料工程, 2019, 47(1): 32)
[8] Islam M T, Alam M M, Patrucco A, et al. Preparation of nanocellulose: a review [J]. Aatcc. J. Res., 2014, 1: 17
[9] Singh K, Arora J K, Sinha T J M, et al. Functionalization of nanocrystalline cellulose for decontamination of Cr(III) and Cr(VI) from aqueous system: computational modeling approach [J]. Clean Tech. Environ. Policy, 2014, 16: 1179
[10] Swatloski R P, Spear S K, Holbrey J D, et al. Dissolution of cellose with ionic liquids [J]. J. Am. Chem. Soc., 2002, 124: 4974
doi: 10.1021/ja025790m pmid: 11982358
[11] Lu Y, Sun Q F, Yu H P, et al. Dissolution and regeneration of cellulose and development in processing cellulose-based materials with ionic liquids [J]. Chin. J. Org. Chem., 2010, 30: 1593
[11] (卢芸, 孙庆丰, 于海鹏等. 离子液体中的纤维素溶解、再生及材料制备研究进展 [J]. 有机化学, 2010, 30: 1593)
[12] Qiu J, Wang Z Y, Sun Q, et al. Effect of surface modification and hybridization of uhmwpe fibers on performance of their composites with epoxy resin [J]. Chin. J. Mater. Res., 2015, 29: 807
[12] (邱军, 王增义, 孙茜等. 表面改性和混杂对超高分子量聚乙烯纤维/环氧树脂复合材料性能的影响 [J]. 材料研究学报, 2015, 29: 807)
[13] Su X Y, Bai B, Ding C X, et al. Preparation and water absorption/retention properties of coconut husk powders/ poly (acrylic acid-co-acryl amide) hybrid superabsorbent [J]. Mater. Rev., 2015, 29(6): 54
[13] (苏小育, 白波, 丁晨旭等. 椰糠粉/聚丙烯酸-丙烯酰胺复合吸水材料的制备及其吸保水性能 [J]. 材料导报, 2015, 29(6): 54)
[14] Wang Y H, Wei X Y, Li J H, et al. Homogeneous isolation of nanocellulose from cotton cellulose by high pressure homogenization [J]. J. Mater. Sci. Chem. Eng., 2016, 1: 49
[15] Zafeiropoulos N E, Vickers P E, Baillie C A, et al. An experimental investigation of modified and unmodified flax fibres with XPS, ToF-SIMS and ATR-FTIR [J]. J. Mater. Sci., 2003, 38: 3903
[16] Samiey B, Tehrani A D. Study of adsorption of Janus Green B and methylene blue on nanocrystalline cellulose [J]. J. Chin. Chem. Soc., 2015, 62: 149
[17] Mohammed N, Grishkewich N, Berry R M, et al. Cellulose nanocrystal-alginate hydrogel beads as novel adsorbents for organic dyes in aqueous solutions [J]. Cellulose, 2015, 22: 3725
[18] Kumari S, Chauhan G S, Ahn J H. Novel cellulose nanowhiskers-based polyurethane foam for rapid and persistent removal of methylene blue from its aqueous solutions [J]. Chem. Eng. J., 2016, 304: 728
[19] Saucedo I, Guibal E, Roussy J, et al. Uranium sorption by glutamate glucall: A modified chitosan part I: Equilibrium studies [J]. Water SA, 1993, 19: 113
[20] Leyva-Ramos R, Fuentes-Rubio L, Guerrero-Coronado R M, et al. Adsorption of trivalent chromium from aqueous solutions onto activated carbon [J]. J. Chem. Technol. Biotechnol., 1995, 62: 64
[21] Haribabu E, Upadhya Y D, Upadhyay S N. Removal of phenols from effluents by fly ash [J]. Int. J. Environ. Stu., 1993, 43: 169
[22] Han R P, Zhang J H, Zou W H, et al. Biosorption of copper(II) and lead(II) from aqueous solution by chaff in a fixed-bed column [J]. J. Hazard. Mater., 2006, 133: 262
doi: 10.1016/j.jhazmat.2005.10.019 pmid: 16298055
[23] Acemioğlu B. Removal of Fe(II) ions from aqueous solution by Calabrian pine bark wastes [J]. Bioresour. Technol., 2004, 93: 99
doi: 10.1016/j.biortech.2003.10.010 pmid: 14987727
[24] Rengaraj S, Kim Y, Joo C K, et al. Removal of copper from aqueous solution by aminated and protonated mesoporous aluminas: kinetics and equilibrium [J]. J. Colloid Interface Sci., 2004, 273: 14
doi: 10.1016/j.jcis.2004.01.007 pmid: 15051430
[25] Chiron N, Guilet R, Deydier E. Adsorption of Cu(II) and Pb(II) onto a grafted silica: isotherms and kinetic model [J]. Water Res., 2003, 37: 3079
pmid: 14509694
[26] Hua K, Rocha I, Zhang P, et al. Transition from bioinert to bioactive material by tailoring the biological cell response to carboxylated nanocellulose [J]. Biomacromolecules, 2015, 17: 1224
pmid: 26886265
[27] Vadivelan V, Kumar K V. Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk [J]. J. ColloidInterface Sci., 2005, 286: 90
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[9] 阙爱珍, 朱桃玉, 郑玉婴. 中空磁性氧化石墨烯的制备及其对亚甲基蓝吸附性能[J]. 材料研究学报, 2021, 35(7): 517-525.
[10] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[11] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[12] 穆兆宇, 蔡文杰, 陈悦, 潘洁, 陈杨. 介孔氧化硅/氧化铈核壳双相复合颗粒的制备及其光催化降解活性[J]. 材料研究学报, 2021, 35(5): 364-370.
[13] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[14] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[15] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.