|
|
晶粒尺寸对304奥氏体不锈钢组织演变和性能的影响 |
孙京丽( ),周海涛,陈莉,吴宏,刘维丽,姚斐,徐玉棱 |
上海航天精密机械研究所 上海 201600 |
|
Grain Size Effect on Microstructure Evolution and Properties of 304 Austenitic Stainless Steel |
SUN Jingli( ),ZHOU Haitao,CHEN Li,WU Hong,LIU Weili,YAO Fei,XU Yuling |
Shanghai Spaceflight Precision Machinery Institute, Shanghai 201600,China |
引用本文:
孙京丽,周海涛,陈莉,吴宏,刘维丽,姚斐,徐玉棱. 晶粒尺寸对304奥氏体不锈钢组织演变和性能的影响[J]. 材料研究学报, 2020, 34(3): 231-240.
Jingli SUN,
Haitao ZHOU,
Li CHEN,
Hong WU,
Weili LIU,
Fei YAO,
Yuling XU.
Grain Size Effect on Microstructure Evolution and Properties of 304 Austenitic Stainless Steel[J]. Chinese Journal of Materials Research, 2020, 34(3): 231-240.
[1] | Jing X Z, Chen W, Yang W M. Metal Material Application Handbook [M]. Xi’an: Shangxi Science and Technology Press, 1989 | [1] | 荆秀芝, 陈文, 杨武鸣. 金属材料应用手册 [M]. 西安: 陕西科学技术出版社, 1989 | [2] | China Aviation Materials Application Manual Editing Committee. China Aeronautical Materials Handbook I: Structural Steel & Stainless Steel [M]. 2nd ed. Beijing: China Standards Press, 2002 | [2] | 《中国航空材料应用手册》编辑委员会. 中国航空材料手册-第1卷-结构钢 不锈钢 [M]. 2版. 北京: 中国标准出版社, 2002 | [3] | Sun J L, Zou D, Li L, et al. Localized corrosion resistance of three commonly-used stainless steels [J]. Chin. J. Mater. Res., 2017, 31: 665 | [3] | 孙京丽, 邹丹, 金晶等. 三种常用不锈钢的耐局部腐蚀性能 [J]. 材料研究学报, 2017, 31: 665 | [4] | Sun J L, Chen B, Liu F, et al. Effect of heat treatment on microstructure and pitting corrosion resistance of austenitic stainless steel [J]. Heat Treat. Met., 2019, 44: 119 | [4] | 孙京丽, 陈 斌, 刘 帆等. 热处理对奥氏体不锈钢微观组织和耐点蚀性能的影响 [J]. 金属热处理, 2019, 44: 119 | [5] | Fang X Y, Wang W G, Guo H, et al. 3n special boundary distributions of the cold-rolled and annealed 304 stainless steel [J]. Acta Metall. Sin., 2007, 43: 1239 | [5] | 方晓英, 王卫国, 郭 红等. 304不锈钢冷轧退火∑3n特殊晶界分布研究 [J]. 金属学报, 2007, 43: 1239 | [6] | Luo X, Xia S, Li H, et al. Effect of grain boundary character distribution on stress corrosion cracking in 304 stainless steel [J]. J. Shanghai Univ. (Nat. Sci. Edit)., 2010, 16: 177 | [6] | 罗 鑫, 夏 爽, 李 慧等. 晶界特征分布对304不锈钢应力腐蚀开裂的影响 [J]. 上海大学学报(自然科学版), 2010, 16: 177 | [7] | Fang X Y, Cai Z X, Wang W G. Effect of pre-treatment on grain boundary characteristic distribution of cold-rolled and annealed austenitic stainless steel [J]. Hot Working Technol., 2011, 40(8): 162 | [7] | 方晓英, 蔡正旭, 王卫国. 预处理状态对轧制退火后奥氏体不锈钢晶界特征分布的影响 [J]. 热加工工艺, 2011, 40(8): 162 | [8] | Shimada M, Kokawa H, Wang Z J, et al. Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering [J]. Acta Mater., 2002, 50: 2331 | [9] | Watanabe T. An approach to grain boundary design for strong and ductile polycrystals [J]. Res. Mech., 1984, 11: 47 | [10] | Lin P, Palumbo G, Erb U, et al. Influence of grain boundary character distribution on sensitization and intergranular corrosion of alloy 600 [J]. Scr. Metall. Mater., 1995, 33: 1387 | [11] | Sun H Y, Zhou Z J, Wang M, et al. Effect of thermomechanical parameters on ∑3n Grain boundaries and grain boundary networks of a new superaustenitic stainless steel [J]. J. Iron Steel Res. Int., 2014, 21: 109 | [12] | Fang X Y, Wang W G, Cai Z X, et al. Study on grain boundary character distributions in annealed 304 stainless steel annealed at high temperature and low temperature after slight cold-rolling [J]. Hot Working Technol., 2010, 39(16): 138 | [12] | 方晓英, 王卫国, 蔡正旭等. 小形变冷轧304不锈钢高温和低温退火晶界特征分布研究 [J]. 热加工工艺, 2010, 39(16): 138 | [13] | Jin Y X, Jia Y H, Guo Y H. Effect of cold deformation on grain boundary distribution and microtexture of 1Cr18Ni9 [J]. J. Jiangsu Univ. Sci. Technol., 2008, 22(14): 33 | [13] | 金云学, 贾雨海, 郭宇航. 冷变形对1Cr18Ni9晶界分布及微织构的影响 [J]. 江苏科技大学学报(自然科学版), 2008, 22(4): 33 | [14] | Wang K, Chen W J. The optimization process of grain boundary character distribution in 316 Saustenitic stainless steel including Nb [J]. Metal World, 2012(2): 57 | [14] | 王 坤, 陈文觉. 含铌316不锈钢晶界特征分布优化工艺的探索 [J]. 金属世界, 2012, (2): 57 | [15] | Sun B, Gao L H, Li X Y. Optimization research of inter-crystalline corrosion-resistant process for 316 stainless steels [J]. Hot Work. Technol., 2009, 38(16): 38 | [15] | 孙 兵, 高林寒, 李小蕴. 316不锈钢抗晶间腐蚀工艺优化的研究 [J]. 热加工工艺, 2009, 38(16): 38 | [16] | Sun J L, Trimby P W, Yan F K, et al. Grain size effect on deformation twinning propensity in ultrafine-grained hexagonal close-packed titanium [J]. Scr. Mater., 2013, 69: 428 | [17] | Sun J L, Trimby P W, Si X, et al. Nano twins in ultrafine-grained Ti processed by dynamic plastic deformation [J]. Scr. Mater., 2013, 68: 475 | [18] | Unnikrishnan R, Idury K S N S, Ismail T P, et al. Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments [J]. Mater. Charact., 2014, 93: 10 | [19] | Ha K F. Microscopic Theory of Mechanical Properties of Metals [M]. Beijing: Science Press, 1983 | [19] | 哈宽富. 金属力学性质的微观理论 [M]. 北京: 科学出版社, 1983 | [20] | Yu Y N. Foundation of Materials Science [M]. Beijing: Higher Education Press, 2006 | [20] | 余永宁. 材料科学基础 [M]. 北京: 高等教育出版社, 2006 | [21] | Randle V. Twinning-related grain boundary engineering [J]. Acta Mater., 2004, 52: 4067 | [22] | Stratulat A, Duff J A, Marrow T J. Grain boundary structure and intergranular stress corrosion crack initiation in high temperature water of a thermally sensitised austenitic stainless steel, observed in situ [J]. Corros. Sci., 2014, 85: 428 | [23] | Bozzolo N, Dewobroto N, Wenk H R, et al. Microstructure and microtexture of highly cold-rolled commercially pure titanium [J]. J. Mater. Sci., 2007, 42: 2405 | [24] | Tsuru T, Latanision R M. Corrosion resistance of microcrystalline stainless steels [J]. J. Electrochem. Soc., 1982, 129: 1402 | [25] | Hasegawa M, Osawa M. Corrosion behavior of ultrafine grained austenitic stainless steel [J]. Corrosion, 1984, 40: 371 | [26] | Shi J H, Wu B L, Liu G. Study on corrosion property of 316L stainless steel with nanocrystalline surface [J]. J. Mater. Eng., 2005, (10): 42 | [26] | 石继红, 武宝林, 刘 刚. 316L不锈钢表面纳米化后腐蚀性能研究 [J]. 材料工程, 2005, (10): 42 | [27] | Lang F J, Ruan W H, Li M C, et al. Influence of temperature on corrosion of 316L stainless steel in seawater [J]. Corros. Sci. Prot. Technol., 2012, 24: 61 | [27] | 郎丰军, 阮伟慧, 李谋成等. 温度对316L不锈钢耐海水腐蚀性能的影响 [J]. 腐蚀科学与防护技术, 2012, 24: 61 | [28] | Rodriguez P. Influence of metallurgical variables on corrosion [J]. Key Eng. Mater., 1989, 35-36: 31 | [29] | Li G D, Wang Y, Cao Z Q. Effect of refined grain size on corrosion behavior of metal Cr in media containing chloride ions [J]. CIESC J., 2012, 63: 560 | [30] | Chong P H, Liu Z, Wang X Y, et al. Pitting corrosion behaviour of large area laser surface treated 304L stainless steel [J]. Thin Solid Films, 2004, 453-454: 388 | [31] | Yasuda M, Weinberg F, Tromans D. Pitting corrosion of Al and Al-Cu single crystals [J]. J. Electrochem. Soc., 1990, 137: 3708 | [32] | Park C J, Lohrengel M M, Hamelmann T, et al. Grain-dependent passivation of surfaces of polycrystalline zinc [J]. Electrochim. Acta, 2002, 47: 3395 | [33] | Irene E A, Massoud H Z, Tierney E. Silicon oxidation studies: silicon orientation effects on thermal oxidation [J]. J. Electrochem. Soc., 1986, 133: 1253 | [34] | Ashton R F, Hepworth M T. Effect of crystal orientation on the anodic polarization and passivity of zinc [J]. Corrosion, 1968, 24: 50 | [35] | Park H, Szpunar J A. The role of texture and morphology in optimizing the corrosion resistance of zinc-based electrogalvanized coatings [J]. Corros. Sci., 1998, 40: 525 | [36] | Weininger J L, Breiter M W. Effect of crystal structure on the anodic oxidation of Nickel [J]. J. Electrochem. Soc., 1963, 110: 484 | [37] | Gray J J, Ei Dasher B S, Orme C A. Competitive effects of metal dissolution and passivation modulated by surface structure: An AFM and EBSD study of the corrosion of alloy 22 [J]. Surf. Sci., 2006, 600: 2488 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|