Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (3): 231-240    DOI: 10.11901/1005.3093.2019.446
  研究论文 本期目录 | 过刊浏览 |
晶粒尺寸对304奥氏体不锈钢组织演变和性能的影响
孙京丽(),周海涛,陈莉,吴宏,刘维丽,姚斐,徐玉棱
上海航天精密机械研究所 上海 201600
Grain Size Effect on Microstructure Evolution and Properties of 304 Austenitic Stainless Steel
SUN Jingli(),ZHOU Haitao,CHEN Li,WU Hong,LIU Weili,YAO Fei,XU Yuling
Shanghai Spaceflight Precision Machinery Institute, Shanghai 201600,China
引用本文:

孙京丽,周海涛,陈莉,吴宏,刘维丽,姚斐,徐玉棱. 晶粒尺寸对304奥氏体不锈钢组织演变和性能的影响[J]. 材料研究学报, 2020, 34(3): 231-240.
Jingli SUN, Haitao ZHOU, Li CHEN, Hong WU, Weili LIU, Fei YAO, Yuling XU. Grain Size Effect on Microstructure Evolution and Properties of 304 Austenitic Stainless Steel[J]. Chinese Journal of Materials Research, 2020, 34(3): 231-240.

全文: PDF(3390 KB)   HTML
摘要: 

研究了初始织构相近而晶粒尺寸不同的304奥氏体不锈钢在后续10%压缩变形和热处理过程中微观组织、力学和耐蚀性的变化。结果表明,具有相似织构而晶粒尺寸不同的样品变形热处理后其织构不同,粗晶在变形中织构的变化更大;织构相近时抗拉强度对晶粒尺寸的依赖较大;织构不同时,织构对硬度和抗拉强度的影响大于晶粒尺寸和微应变的影响;变形热处理后普通大角度晶界和晶内微应变的增大降低了试样的耐腐蚀性能;初始晶粒尺寸较小的试样在变形热处理后出现四种密排面平行于外表面的织构,其耐点蚀的性能更优。

关键词 金属材料微观组织电子背散射衍射技术晶粒尺寸晶界工程    
Abstract

304 austenitic stainless steel was pre-heated in the conditions of different temperatures and time to produce samples with close texture but different grain size. Then the effect of the subsequent compression and heat treatment on the microstructure evolution and properties of the obtained samples was investigated. Results show that the initial grain size played an important role in the final texture of the sample after deformation and heating. The texture in the initial sample with coarse grains changed much more than that in the sample with finer grains. For the samples with close textures, grain size has greater effect on their tensile strength; For samples with different texture, the texture has greater effect on mechanical properties rather than the grain size and micro stain. During the deformation and subsequent heating, the increase of macro strain within the grains and high angle boundaries with high energies lowered the corrosion resistance of 304 steel. However, after deformation, the preferred orientation texture with four planes of close-packed lattice emerged on the samples, thereby, the corrosion resistance of the steel could be increased to some extent.

Key wordsmetallic materials    microstructure    EBSD    grain size    grain boundary engineering
收稿日期: 2019-09-15     
ZTFLH:  TB31  
基金资助:上海市浦江人才计划(15PJ1433600)
作者简介: 孙京丽,女,1985年生,高级工程师
图1  轧板方向和试样的切割、变形方向示意图
图2  初始热处理试样的显微组织
图3  初始热处理试样不同方向的反极图
SpecimenRm/MPaHRB(RD)HRB(ND)HRB(TD)
R1-1#659±2.180.2±1.182.5±0.881.3±3.7
R1-2#625±2.379.5±3.889.9±0.989.1±2.3
表1  两种初始热处理试样的力学性能
图4  R2-1#-10%的显微组织
图5  R2-2#-10%的显微组织
图6  R3-1#-10%的显微组织
图7  R3-2#-10%的显微组织
SpecimenCSLΣ3Σ9Σ27HAGBLAGB
R1-1#59.652.61.90.7103.63.9
R3-1#-10%76.268.03.51.1112.32.4
R1-2#34.432.30.50.253.55.5
R3-2#-10%54.846.72.91.199.03.5
表2  单位面积晶界长度(mm/mm2)
SpecimenCSL/%Σ3/%Σ9/%Σ27/%
R1-1#57.650.81.80.7
R3-1#-10%67.860.63.11.0
R1-2#64.360.41.00.4
R3-2#-10%55.347.22.91.1
表3  单位面积特殊晶界分数
Specimen<2°/%<5°/%<10°/%
R1-1#14.172.499.3
R3-1#-10%8.768.8100
R1-2#92.6100-
R3-2#-10%23.883.6100
表4  几种试样晶内最大取向差
SpecimenRm/MPaHRB(RD)HRB(ND)HRB(TD)
R3-1#-10%628±3.077±1.878.8±1.778.5±1.4
R3-2#-10%624±2.674.3±3.577.1±1.576.4±3.1
表5  变形热处理试样力学性能
图8  试样的点蚀形貌
SpecimenA/m2Wb/gWa/gt/hυ/g?(m2?h)-1
R1-1#0.0007976.29216.2354481.48
R3-1#-10%0.0005474.08984.0436481.76
R1-2#0.0006124.72124.6853481.20
R3-2#-10%0.0007045.38585.3226481.87
表6  几种状态试样点蚀试验测试数据
[1] Jing X Z, Chen W, Yang W M. Metal Material Application Handbook [M]. Xi’an: Shangxi Science and Technology Press, 1989
[1] 荆秀芝, 陈文, 杨武鸣. 金属材料应用手册 [M]. 西安: 陕西科学技术出版社, 1989
[2] China Aviation Materials Application Manual Editing Committee. China Aeronautical Materials Handbook I: Structural Steel & Stainless Steel [M]. 2nd ed. Beijing: China Standards Press, 2002
[2] 《中国航空材料应用手册》编辑委员会. 中国航空材料手册-第1卷-结构钢 不锈钢 [M]. 2版. 北京: 中国标准出版社, 2002
[3] Sun J L, Zou D, Li L, et al. Localized corrosion resistance of three commonly-used stainless steels [J]. Chin. J. Mater. Res., 2017, 31: 665
[3] 孙京丽, 邹丹, 金晶等. 三种常用不锈钢的耐局部腐蚀性能 [J]. 材料研究学报, 2017, 31: 665
[4] Sun J L, Chen B, Liu F, et al. Effect of heat treatment on microstructure and pitting corrosion resistance of austenitic stainless steel [J]. Heat Treat. Met., 2019, 44: 119
[4] 孙京丽, 陈 斌, 刘 帆等. 热处理对奥氏体不锈钢微观组织和耐点蚀性能的影响 [J]. 金属热处理, 2019, 44: 119
[5] Fang X Y, Wang W G, Guo H, et al. 3n special boundary distributions of the cold-rolled and annealed 304 stainless steel [J]. Acta Metall. Sin., 2007, 43: 1239
[5] 方晓英, 王卫国, 郭 红等. 304不锈钢冷轧退火∑3n特殊晶界分布研究 [J]. 金属学报, 2007, 43: 1239
[6] Luo X, Xia S, Li H, et al. Effect of grain boundary character distribution on stress corrosion cracking in 304 stainless steel [J]. J. Shanghai Univ. (Nat. Sci. Edit)., 2010, 16: 177
[6] 罗 鑫, 夏 爽, 李 慧等. 晶界特征分布对304不锈钢应力腐蚀开裂的影响 [J]. 上海大学学报(自然科学版), 2010, 16: 177
[7] Fang X Y, Cai Z X, Wang W G. Effect of pre-treatment on grain boundary characteristic distribution of cold-rolled and annealed austenitic stainless steel [J]. Hot Working Technol., 2011, 40(8): 162
[7] 方晓英, 蔡正旭, 王卫国. 预处理状态对轧制退火后奥氏体不锈钢晶界特征分布的影响 [J]. 热加工工艺, 2011, 40(8): 162
[8] Shimada M, Kokawa H, Wang Z J, et al. Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering [J]. Acta Mater., 2002, 50: 2331
[9] Watanabe T. An approach to grain boundary design for strong and ductile polycrystals [J]. Res. Mech., 1984, 11: 47
[10] Lin P, Palumbo G, Erb U, et al. Influence of grain boundary character distribution on sensitization and intergranular corrosion of alloy 600 [J]. Scr. Metall. Mater., 1995, 33: 1387
[11] Sun H Y, Zhou Z J, Wang M, et al. Effect of thermomechanical parameters on ∑3n Grain boundaries and grain boundary networks of a new superaustenitic stainless steel [J]. J. Iron Steel Res. Int., 2014, 21: 109
[12] Fang X Y, Wang W G, Cai Z X, et al. Study on grain boundary character distributions in annealed 304 stainless steel annealed at high temperature and low temperature after slight cold-rolling [J]. Hot Working Technol., 2010, 39(16): 138
[12] 方晓英, 王卫国, 蔡正旭等. 小形变冷轧304不锈钢高温和低温退火晶界特征分布研究 [J]. 热加工工艺, 2010, 39(16): 138
[13] Jin Y X, Jia Y H, Guo Y H. Effect of cold deformation on grain boundary distribution and microtexture of 1Cr18Ni9 [J]. J. Jiangsu Univ. Sci. Technol., 2008, 22(14): 33
[13] 金云学, 贾雨海, 郭宇航. 冷变形对1Cr18Ni9晶界分布及微织构的影响 [J]. 江苏科技大学学报(自然科学版), 2008, 22(4): 33
[14] Wang K, Chen W J. The optimization process of grain boundary character distribution in 316 Saustenitic stainless steel including Nb [J]. Metal World, 2012(2): 57
[14] 王 坤, 陈文觉. 含铌316不锈钢晶界特征分布优化工艺的探索 [J]. 金属世界, 2012, (2): 57
[15] Sun B, Gao L H, Li X Y. Optimization research of inter-crystalline corrosion-resistant process for 316 stainless steels [J]. Hot Work. Technol., 2009, 38(16): 38
[15] 孙 兵, 高林寒, 李小蕴. 316不锈钢抗晶间腐蚀工艺优化的研究 [J]. 热加工工艺, 2009, 38(16): 38
[16] Sun J L, Trimby P W, Yan F K, et al. Grain size effect on deformation twinning propensity in ultrafine-grained hexagonal close-packed titanium [J]. Scr. Mater., 2013, 69: 428
[17] Sun J L, Trimby P W, Si X, et al. Nano twins in ultrafine-grained Ti processed by dynamic plastic deformation [J]. Scr. Mater., 2013, 68: 475
[18] Unnikrishnan R, Idury K S N S, Ismail T P, et al. Effect of heat input on the microstructure, residual stresses and corrosion resistance of 304L austenitic stainless steel weldments [J]. Mater. Charact., 2014, 93: 10
[19] Ha K F. Microscopic Theory of Mechanical Properties of Metals [M]. Beijing: Science Press, 1983
[19] 哈宽富. 金属力学性质的微观理论 [M]. 北京: 科学出版社, 1983
[20] Yu Y N. Foundation of Materials Science [M]. Beijing: Higher Education Press, 2006
[20] 余永宁. 材料科学基础 [M]. 北京: 高等教育出版社, 2006
[21] Randle V. Twinning-related grain boundary engineering [J]. Acta Mater., 2004, 52: 4067
[22] Stratulat A, Duff J A, Marrow T J. Grain boundary structure and intergranular stress corrosion crack initiation in high temperature water of a thermally sensitised austenitic stainless steel, observed in situ [J]. Corros. Sci., 2014, 85: 428
[23] Bozzolo N, Dewobroto N, Wenk H R, et al. Microstructure and microtexture of highly cold-rolled commercially pure titanium [J]. J. Mater. Sci., 2007, 42: 2405
[24] Tsuru T, Latanision R M. Corrosion resistance of microcrystalline stainless steels [J]. J. Electrochem. Soc., 1982, 129: 1402
[25] Hasegawa M, Osawa M. Corrosion behavior of ultrafine grained austenitic stainless steel [J]. Corrosion, 1984, 40: 371
[26] Shi J H, Wu B L, Liu G. Study on corrosion property of 316L stainless steel with nanocrystalline surface [J]. J. Mater. Eng., 2005, (10): 42
[26] 石继红, 武宝林, 刘 刚. 316L不锈钢表面纳米化后腐蚀性能研究 [J]. 材料工程, 2005, (10): 42
[27] Lang F J, Ruan W H, Li M C, et al. Influence of temperature on corrosion of 316L stainless steel in seawater [J]. Corros. Sci. Prot. Technol., 2012, 24: 61
[27] 郎丰军, 阮伟慧, 李谋成等. 温度对316L不锈钢耐海水腐蚀性能的影响 [J]. 腐蚀科学与防护技术, 2012, 24: 61
[28] Rodriguez P. Influence of metallurgical variables on corrosion [J]. Key Eng. Mater., 1989, 35-36: 31
[29] Li G D, Wang Y, Cao Z Q. Effect of refined grain size on corrosion behavior of metal Cr in media containing chloride ions [J]. CIESC J., 2012, 63: 560
[30] Chong P H, Liu Z, Wang X Y, et al. Pitting corrosion behaviour of large area laser surface treated 304L stainless steel [J]. Thin Solid Films, 2004, 453-454: 388
[31] Yasuda M, Weinberg F, Tromans D. Pitting corrosion of Al and Al-Cu single crystals [J]. J. Electrochem. Soc., 1990, 137: 3708
[32] Park C J, Lohrengel M M, Hamelmann T, et al. Grain-dependent passivation of surfaces of polycrystalline zinc [J]. Electrochim. Acta, 2002, 47: 3395
[33] Irene E A, Massoud H Z, Tierney E. Silicon oxidation studies: silicon orientation effects on thermal oxidation [J]. J. Electrochem. Soc., 1986, 133: 1253
[34] Ashton R F, Hepworth M T. Effect of crystal orientation on the anodic polarization and passivity of zinc [J]. Corrosion, 1968, 24: 50
[35] Park H, Szpunar J A. The role of texture and morphology in optimizing the corrosion resistance of zinc-based electrogalvanized coatings [J]. Corros. Sci., 1998, 40: 525
[36] Weininger J L, Breiter M W. Effect of crystal structure on the anodic oxidation of Nickel [J]. J. Electrochem. Soc., 1963, 110: 484
[37] Gray J J, Ei Dasher B S, Orme C A. Competitive effects of metal dissolution and passivation modulated by surface structure: An AFM and EBSD study of the corrosion of alloy 22 [J]. Surf. Sci., 2006, 600: 2488
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[11] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.