|
|
AuAg/Bi2O3复合材料的光催化降解和还原性能 |
孙小锋, 县涛( ), 邸丽景, 周永杰, 李红琴 |
青海师范大学物理与电子信息工程学院 西宁 810008 |
|
Photocatalytic Degradation and Reduction Properties of AuAg/Bi2O3 Composite |
SUN Xiaofeng, XIAN Tao( ), DI Lijing, ZHOU Yongjie, LI Hongqin |
College of Physics and Electronic Information Engineering, Qinghai Normal University, Xining 810008, China |
引用本文:
孙小锋, 县涛, 邸丽景, 周永杰, 李红琴. AuAg/Bi2O3复合材料的光催化降解和还原性能[J]. 材料研究学报, 2020, 34(12): 921-932.
Xiaofeng SUN,
Tao XIAN,
Lijing DI,
Yongjie ZHOU,
Hongqin LI.
Photocatalytic Degradation and Reduction Properties of AuAg/Bi2O3 Composite[J]. Chinese Journal of Materials Research, 2020, 34(12): 921-932.
1 |
Xie L, Wang P, Li Z F, et al. Hydrothermal synthesis and photocatalytic activity of CuO/ZnO composite photocatalyst [J]. Chin. J. Mater. Res., 2019, 33(10): 728
|
1 |
谢亮, 王平, 李之锋等. CuO/ZnO复合光催化剂的制备和性能 [J]. 材料研究学报, 2019, 33(10): 728
|
2 |
Liao Z H, Chen J J, Yao K F, et al. Preparation and characterization of nanometer-sized magnetic photocatalyst TiO2/SiO2/Fe3O4 [J]. Int. J. Inorg. Mater., 2004, (04): 749
|
2 |
廖振华, 陈建军, 姚可夫等. 磁性纳米TiO2/SiO2/Fe3O4光催化剂的制备及表征 [J]. 无机材料学报, 2004, (04): 749
|
3 |
Qin Y, Yang Y, Zhao P, et al. Microstructures and photocatalytic properties of BiOCl-RGO nanocomposites prepared by two-step hydrothermal method [J]. Chin. J. Mater. Res., 2020, 34(2): 92
|
3 |
秦艳利, 杨艳, 赵鹏羽等. 两步水热法制备BiOCl-RGO纳米复合材料及其光催化性能 [J]. 材料研究学报, 2020, 34(2): 92
|
4 |
Jalalah M, Faisal M, Bouzid H, et al. Comparative study on photocatalytic performances of crystalline α-and β-Bi2O3 nanoparticles under visible light [J]. J. Ind. and Eng. Chem., 2015, 30: 183
|
5 |
Luo X, Zhu G, Peng J, et al. Enhanced photocatalytic activity of Gd-doped porous β-Bi2O3 photocatalysts under visible light irradiation [J]. Appl. Surf. Sci., 2015, 351: 260
|
6 |
Gao X M, Shuang Y Y, Liu L B, et al. Zn doping 2D layered δ-Bi2O3 nanosheets for photocatalytic nitrogen fixation [J]. Int. J. Inorg. Mater., 2019, 34(09): 967
|
6 |
高晓明, 尚艳岩, 刘利波等. Zn掺杂二维层状δ-Bi2O3纳米片的光催化固氮性能研究 [J]. 无机材料学报, 2019, 34(09): 967
|
7 |
Hameed A, Montini T, Gombac V, et al. Surface phases and photocatalytic activity correlation of Bi2O3/Bi2O4-x nanocomposite [J]. J. Am. Chem. Soc., 2008, 130(30): 9658
|
8 |
Thirumurthy K, Thirunarayanan G. A facile designed highly moderate craspedia flowerlike sulphated Bi2O3-fly ash catalyst: Green synthetic strategy for (6H-pyrido [3, 2-b] carbazol-4-yl) aniline derivatives in water [J]. Asian. J. Chem., 2018, 11(4): 443
|
9 |
Hua C H, Ma H C, Dong X L, et al. Synthesis and photocatalytic activity of α-Bi2O3 nanotubes/nitrogen doped carbon quantum dots hybrid material [J]. Chem. J Chinese U, 2018, 39(02): 200
|
9 |
华承贺, 马红超, 董晓丽等. α-Bi2O3纳米管/氮掺杂碳量子点复合材料的合成及光催化性能 [J]. 高等学校化学学报, 2018, 39(02): 200
|
10 |
Zhong X, Dai Z, Qin F, et al. Ag-decorated Bi2O3 nanospheres with enhanced visible-light-driven photocatalytic activities for water treatment [J]. RSC Adv., 2015, 5(85): 69312
|
11 |
Huang Y, Qin J, Liu X, et al. Hydrothermal synthesis of flower-like Na-doped a-Bi2O3 and improved photocatalytic activity via the induced oxygen vacancies [J]. J Taiwan Inst. Chem. E, 2019, 96: 353
|
12 |
Wang Q, Liu E, Zhang C, et al. Synthesis of Cs3PMo12O4/Bi2O3 composite with highly enhanced photocatalytic activity under visible-light irradiation [J]. J. Colloid. Interface. Sci., 2018, 516: 304
|
13 |
Xian T, Sun X, Di L, et al. Carbon quantum dots (CQDs) decorated Bi2O3-x hybrid photocatalysts with promising NIR-light-driven photodegradation activity for AO7 [J]. Catalysts, 2019, 9(12): 1031
|
14 |
Pan X, Xu Y J. Defect-mediated growth of noble-metal (Ag, Pt, and Pd) nanoparticles on TiO2 with oxygen vacancies for photocatalytic redox reactions under visible light [J]. J. Phys. Chem. C., 2013, 117(35): 17996
|
15 |
Xian T, Di L, Sun X, et al. Photocatalytic degradation of dyes over Au decorated SrTiO3 nanoparticles under simulated sunlight and visible light irradiation [J]. J. Ceram. Soc. Jpn., 2018, 126(5): 354
|
16 |
Zheng Y, Zheng L, Zhan Y, et al. Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis [J]. Inorg. Chem, 2007, 46(17): 6980
|
17 |
Chen Z, Liang X, Fan X, et al. Fabrication and photocatalytic properties of Ce-La-Ag Co-doped TiO2/basalt fiber composite photocatalyst [J]. Chin. J. Mater. Res., 2019, 33(7): 515
|
17 |
陈子尚, 梁小平, 樊小伟等. Ce-La-Ag共掺杂TiO2/玄武岩纤维复合光催化剂的制备和性能 [J]. 材料研究学报, 2019, 33(7): 515
|
18 |
Rayalu S S, Jose D, Joshi M V, et al. Photocatalytic water splitting on Au/TiO2 nanocomposites synthesized through various routes: enhancement in photocatalytic activity due to SPR effect [J]. Appl. Catal., B: Environ., 2013, 142: 684
|
19 |
Xian T, Di L J, Ma J, et al. Photocatalytic degradation activity of BaTiO3 nanoparticles modified with Au in simulated sunlight [J]. Chin. J. Mater. Res., 2017, 31(2): 102
|
19 |
县涛, 邸丽景, 马俊等. Au改性BaTiO3纳米颗粒在模拟太阳光照射下的光催化降解性能 [J]. 材料研究学报, 2017, 31(2): 102
|
20 |
Cui Z K, Mi L W, Fa W J, et al. Preparation and photocatalytic performance of Pt/BiOCl nanostructures [J]. Chin. J. Mater. Res., 2013, 27(6): 583
|
20 |
崔占奎, 米立伟, 法文君等. Pt/BiOCl纳米结构的制备及其光催化性能 [J]. 材料研究学报, 2013, 27(6): 583
|
21 |
Tang L, Feng C, Deng Y, et al. Enhanced photocatalytic activity of ternary Ag/g-C3N4/NaTaO3 photocatalysts under wide spectrum light radiation: the high potential band protection mechanism [J]. Appl. Catal., B: Environ., 2018, 230: 102
|
22 |
Wang F, Yang H, Zhang H, et al. Growth process and enhanced photocatalytic performance of CuBi2O4 hierarchical microcuboids decorated with AuAg alloy nanoparticles [J]. J. Mater. Sci. Mater. Electron, 2018, 29(2): 1304
|
23 |
Ma Y, Kobayashi K, Cao Y, et al. Development of visible-light-responsive morphology-controlled brookite TiO2 nanorods by site-selective loading of AuAg bimetallic nanoparticles [J]. Appl. Catal., B: Environ., 2019, 245: 681
|
24 |
Sun L, Yin Y, Lv P, et al. Green controllable synthesis of Au-Ag alloy nanoparticles using Chinese wolfberry fruit extract and their tunable photocatalytic activity [J]. RSC adv., 2018, 8(8): 3964
|
25 |
Sanabria-Arenas B E, Mazare A, Yoo J, et al. Intrinsic AuPt-alloy particles decorated on TiO2 nanotubes provide enhanced photocatalytic degradation [J]. Electrochim. Acta., 2018, 292: 865
|
26 |
Zeng D, Yang L, Zhou P, et al. AuCu alloys deposited on titanium dioxide nanosheets for efficient photocatalytic hydrogen evolution [J]. Int. J. Hydrogen Energy, 2018, 43(32): 15155
|
27 |
Zhang Y, Park S J. Au-Pd bimetallic alloy nanoparticle-decorated BiPO4 nanorods for enhanced photocatalytic oxidation of trichloroethylene [J]. J. Catal., 2017, 355: 1
|
28 |
Pugazhenthiran N, Sathishkumar P, Murugesan S, et al. Effective degradation of acid orange 10 by catalytic ozonation in the presence of Au-Bi2O3 nanoparticles [J]. Chem. Eng. J., 2011, 168(3): 1227
|
29 |
Gao X, Shang Y, Liu L, et al. Multilayer ultrathin Ag-δ-Bi2O3 with ultrafast charge transformation for enhanced photocatalytic nitrogen fixation [J]. J. Colloid Interface Sci., 2019, 533: 649
|
30 |
Yang K, Li J, Peng Y, et al. Enhanced visible light photocatalysis over Pt-loaded Bi2O3: an insight into its photogenerated charge separation, transfer and capture [J]. Phys. Chem. Chem. Phys., 2017, 19(1): 251
|
31 |
Hu H, Xiao C, Lin X, et al. Controllable fabrication of heterostructured Au/Bi2O3 with plasmon effect for efficient photodegradation of rhodamine 6G [J]. J Exp. Nanosci, 2017, 12(1): 33
|
32 |
Xian T, Di L, Sun X, et al. Photo-fenton degradation of AO7 and photocatalytic reduction of Cr (VI) over CQD-decorated BiFeO3 nanoparticles under visible and NIR light irradiation [J]. Nanoscale. Res. Lett, 2019, 14(1): 1
|
33 |
Ge M, Cao C, Li S, et al. Enhanced photocatalytic performances of n-TiO2 nanotubes by uniform creation of p-n heterojunctions with p-Bi2O3 quantum dots [J]. Nanoscale, 2015, 7(27): 11552
|
34 |
Sahoo M, Mansingh S, Parida K M. A bimetallic Au-Ag nanoalloy mounted LDH/RGO nanocomposite: a promising catalyst effective towards a coupled system for the photoredox reactions converting benzyl alcohol to benzaldehyde and nitrobenzene to aniline under visible light [J]. J. Med. Chem., 2019, 7(13): 7614
|
35 |
Sobana N, Muruganadham M, Swaminathan M. Nano-Ag particles doped TiO2 for efficientphotodegradation of Direct azo dyes [J]. J. Mol. Catal. A: Chem., 2006, 258: 124
|
36 |
Liu G, Li S, Lu Y, et al. Controllable synthesis of α-Bi2O3 and γ-Bi2O3 with high photocatalytic activity byα-Bi2O3→γ-Bi2O3→α-Bi2O3 transformation in a facile precipitation method [J]. J. Alloys Compd., 2016, 689: 787
|
37 |
Gelderman K, Lee L, Donne S W. Flat-band potential of a semiconductor: using the Mott-Schottky equation [J]. J. Chem. Educ., 2007, 84(4): 685
|
38 |
Wei N, Cui H, Wang C, et al. Bi2O3 nanoparticles incorporated porous TiO2 films as an effective p‐n junction with enhanced photocatalytic activity [J]. J. Am. Chem. Soc., 2017, 100(4): 1339
|
39 |
Hou W B, Hung W H, Pavaskar P, et al. Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions [J]. ACS Catal., 2011, 1(8): 929
|
40 |
Xian T, Yang H, Di L J, et al. Enhanced photocatalytic activity of BaTiO3@g-C3N4 for the degradation of methyl orange under simulated sunlight irradiation [J]. J. Alloys Compd., 2015, 622: 1098
|
41 |
Ringe E, McMahon J M, Sohn K, et al. Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach [J]. J. Phys. Chem. C, 2010, 114(29): 12511
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|