Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (12): 921-932    DOI: 10.11901/1005.3093.2020.182
  研究论文 本期目录 | 过刊浏览 |
AuAg/Bi2O3复合材料的光催化降解和还原性能
孙小锋, 县涛(), 邸丽景, 周永杰, 李红琴
青海师范大学物理与电子信息工程学院 西宁 810008
Photocatalytic Degradation and Reduction Properties of AuAg/Bi2O3 Composite
SUN Xiaofeng, XIAN Tao(), DI Lijing, ZHOU Yongjie, LI Hongqin
College of Physics and Electronic Information Engineering, Qinghai Normal University, Xining 810008, China
引用本文:

孙小锋, 县涛, 邸丽景, 周永杰, 李红琴. AuAg/Bi2O3复合材料的光催化降解和还原性能[J]. 材料研究学报, 2020, 34(12): 921-932.
Xiaofeng SUN, Tao XIAN, Lijing DI, Yongjie ZHOU, Hongqin LI. Photocatalytic Degradation and Reduction Properties of AuAg/Bi2O3 Composite[J]. Chinese Journal of Materials Research, 2020, 34(12): 921-932.

全文: PDF(17087 KB)   HTML
摘要: 

先用聚丙烯酰胺凝胶法制备出Bi2O3颗粒,然后用光还原法将粒径为6~18 nm的AuAg合金纳米颗粒修饰在Bi2O3颗粒表面,制备出AuAg/Bi2O3复合光催化剂。AuAg合金纳米颗粒的等离子体共振吸收效应(SPR)使AuAg/Bi2O3复合物能吸收波长为~577 nm的可见光,拓展了Bi2O3的光响应范围,还促进了Bi2O3中光生电荷的分离。以甲基橙(MO)、罗丹明(RhB)和铬离子(Cr(VI))作为目标反应物,在模拟太阳光和可见光照射下考察了AuAg/Bi2O3的光催化降解和还原活性,发现AuAg合金纳米颗粒修饰提高了Bi2O3的光催化性能。用模拟太阳光照射2 h后,RhB和MO的降解率以及Cr(VI)的还原效率分别提高了~34.2%,~38.0%和~56.7%。同时,AuAg/Bi2O3还具有良好的光催化和结构稳定性。基于以上结果,提出了AuAg合金纳米颗粒对Bi2O3光催化性能的改性机理。

关键词 复合材料AuAg合金Bi2O3光催化改性    
Abstract

Bi2O3 particles were fabricated by polyacrylamide gel method, after that the as-prepared Bi2O3 particles were decorated by the AuAg alloy nanoparticles (6~18 nm) to obtain AuAg/Bi2O3 composite. The composite exhibits obvious light absorbance centered around ~577 nm owing to the surface plasmon resonance (SPR) effect of AuAg alloy, which extends the light response range of Bi2O3. More importantly, the separation of photogenerated charges in bare Bi2O3 can be improved by the decoration of AuAg alloy nanoparticles. The rhodamine B (RhB), methyl orange (MO) and Cr(VI) are employed as target reactant to evaluate the photocatalytic degradation and reduction activity of AuAg/Bi2O3 composite under simulated sunlight and visible light irradiation. Results indicate that the composite exhibits obviously enhanced photocatalytic activity compared with the bare Bi2O3. After simulated sunlight irradiation for 2 h the degradation percentage of RhB and MO as well as reduction percentage of Cr(VI) increase by ~34.2%, ~38.0% and ~56.7%, respectively. Furthermore, it is worth noting that the AuAg/Bi2O3 composite has excellent photocatalytic and structure stability. According to above experimental results a possible photocatalytic mechanism of AuAg/Bi2O3 composite was proposed.

Key wordscomposite    AuAg alloy    Bi2O3    photocatalysis    modification
收稿日期: 2020-05-22     
ZTFLH:  TB383  
基金资助:国家自然科学基金(51602170);青海省自然科学基金(2020-ZJ-936Q);青海师范大学中青年科研基金(2019zr003)
作者简介: 孙小锋,男,1992年生,硕士生
图1  制备Bi2O3的流程示意图
图2  AuAg合金修饰Bi2O3的工艺流程
图3  Bi2O3和AuAg/Bi2O3复合材料的XRD图谱
图4  Bi2O3和AuAg/Bi2O3复合物的微观形貌和结构照片
图5  AuAg/Bi2O3复合材料的能谱和元素的面分布图像
图6  AuAg/Bi2O3复合物所含元素的高分辨XPS图谱
图7  Bi2O3和AuAg/Bi2O3复合材料的紫外-可见光漫反射光谱和一阶微分光谱
图8  Bi2O3和AuAg/Bi2O3的光电流曲线、交流阻抗图谱和荧光光谱
图9  Bi2O3和AuAg/Bi2O3复合物在模拟太阳光和可见光照射下对MO和RhB的光催化降解
图10  在模拟太阳光和可见光照射下Bi2O3和AuAg/Bi2O3复合物对Cr(VI)的光催化还原
图11  在模拟太阳光和可见光照射下Ag/Bi2O3,Au/Bi2O3和AuAg/Bi2O3对染料和Cr(VI)的光催化活性
图12  模拟太阳光照射下AuAg/Bi2O3复合物对MO和RhB的光催化降解和对Cr(VI)光催化还原的稳定性
图13  Bi2O3的Mott-Schottky曲线和AuAg/Bi2O3复合物的光催化机理示意图
1 Xie L, Wang P, Li Z F, et al. Hydrothermal synthesis and photocatalytic activity of CuO/ZnO composite photocatalyst [J]. Chin. J. Mater. Res., 2019, 33(10): 728
1 谢亮, 王平, 李之锋等. CuO/ZnO复合光催化剂的制备和性能 [J]. 材料研究学报, 2019, 33(10): 728
2 Liao Z H, Chen J J, Yao K F, et al. Preparation and characterization of nanometer-sized magnetic photocatalyst TiO2/SiO2/Fe3O4 [J]. Int. J. Inorg. Mater., 2004, (04): 749
2 廖振华, 陈建军, 姚可夫等. 磁性纳米TiO2/SiO2/Fe3O4光催化剂的制备及表征 [J]. 无机材料学报, 2004, (04): 749
3 Qin Y, Yang Y, Zhao P, et al. Microstructures and photocatalytic properties of BiOCl-RGO nanocomposites prepared by two-step hydrothermal method [J]. Chin. J. Mater. Res., 2020, 34(2): 92
3 秦艳利, 杨艳, 赵鹏羽等. 两步水热法制备BiOCl-RGO纳米复合材料及其光催化性能 [J]. 材料研究学报, 2020, 34(2): 92
4 Jalalah M, Faisal M, Bouzid H, et al. Comparative study on photocatalytic performances of crystalline α-and β-Bi2O3 nanoparticles under visible light [J]. J. Ind. and Eng. Chem., 2015, 30: 183
5 Luo X, Zhu G, Peng J, et al. Enhanced photocatalytic activity of Gd-doped porous β-Bi2O3 photocatalysts under visible light irradiation [J]. Appl. Surf. Sci., 2015, 351: 260
6 Gao X M, Shuang Y Y, Liu L B, et al. Zn doping 2D layered δ-Bi2O3 nanosheets for photocatalytic nitrogen fixation [J]. Int. J. Inorg. Mater., 2019, 34(09): 967
6 高晓明, 尚艳岩, 刘利波等. Zn掺杂二维层状δ-Bi2O3纳米片的光催化固氮性能研究 [J]. 无机材料学报, 2019, 34(09): 967
7 Hameed A, Montini T, Gombac V, et al. Surface phases and photocatalytic activity correlation of Bi2O3/Bi2O4-x nanocomposite [J]. J. Am. Chem. Soc., 2008, 130(30): 9658
8 Thirumurthy K, Thirunarayanan G. A facile designed highly moderate craspedia flowerlike sulphated Bi2O3-fly ash catalyst: Green synthetic strategy for (6H-pyrido [3, 2-b] carbazol-4-yl) aniline derivatives in water [J]. Asian. J. Chem., 2018, 11(4): 443
9 Hua C H, Ma H C, Dong X L, et al. Synthesis and photocatalytic activity of α-Bi2O3 nanotubes/nitrogen doped carbon quantum dots hybrid material [J]. Chem. J Chinese U, 2018, 39(02): 200
9 华承贺, 马红超, 董晓丽等. α-Bi2O3纳米管/氮掺杂碳量子点复合材料的合成及光催化性能 [J]. 高等学校化学学报, 2018, 39(02): 200
10 Zhong X, Dai Z, Qin F, et al. Ag-decorated Bi2O3 nanospheres with enhanced visible-light-driven photocatalytic activities for water treatment [J]. RSC Adv., 2015, 5(85): 69312
11 Huang Y, Qin J, Liu X, et al. Hydrothermal synthesis of flower-like Na-doped a-Bi2O3 and improved photocatalytic activity via the induced oxygen vacancies [J]. J Taiwan Inst. Chem. E, 2019, 96: 353
12 Wang Q, Liu E, Zhang C, et al. Synthesis of Cs3PMo12O4/Bi2O3 composite with highly enhanced photocatalytic activity under visible-light irradiation [J]. J. Colloid. Interface. Sci., 2018, 516: 304
13 Xian T, Sun X, Di L, et al. Carbon quantum dots (CQDs) decorated Bi2O3-x hybrid photocatalysts with promising NIR-light-driven photodegradation activity for AO7 [J]. Catalysts, 2019, 9(12): 1031
14 Pan X, Xu Y J. Defect-mediated growth of noble-metal (Ag, Pt, and Pd) nanoparticles on TiO2 with oxygen vacancies for photocatalytic redox reactions under visible light [J]. J. Phys. Chem. C., 2013, 117(35): 17996
15 Xian T, Di L, Sun X, et al. Photocatalytic degradation of dyes over Au decorated SrTiO3 nanoparticles under simulated sunlight and visible light irradiation [J]. J. Ceram. Soc. Jpn., 2018, 126(5): 354
16 Zheng Y, Zheng L, Zhan Y, et al. Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis [J]. Inorg. Chem, 2007, 46(17): 6980
17 Chen Z, Liang X, Fan X, et al. Fabrication and photocatalytic properties of Ce-La-Ag Co-doped TiO2/basalt fiber composite photocatalyst [J]. Chin. J. Mater. Res., 2019, 33(7): 515
17 陈子尚, 梁小平, 樊小伟等. Ce-La-Ag共掺杂TiO2/玄武岩纤维复合光催化剂的制备和性能 [J]. 材料研究学报, 2019, 33(7): 515
18 Rayalu S S, Jose D, Joshi M V, et al. Photocatalytic water splitting on Au/TiO2 nanocomposites synthesized through various routes: enhancement in photocatalytic activity due to SPR effect [J]. Appl. Catal., B: Environ., 2013, 142: 684
19 Xian T, Di L J, Ma J, et al. Photocatalytic degradation activity of BaTiO3 nanoparticles modified with Au in simulated sunlight [J]. Chin. J. Mater. Res., 2017, 31(2): 102
19 县涛, 邸丽景, 马俊等. Au改性BaTiO3纳米颗粒在模拟太阳光照射下的光催化降解性能 [J]. 材料研究学报, 2017, 31(2): 102
20 Cui Z K, Mi L W, Fa W J, et al. Preparation and photocatalytic performance of Pt/BiOCl nanostructures [J]. Chin. J. Mater. Res., 2013, 27(6): 583
20 崔占奎, 米立伟, 法文君等. Pt/BiOCl纳米结构的制备及其光催化性能 [J]. 材料研究学报, 2013, 27(6): 583
21 Tang L, Feng C, Deng Y, et al. Enhanced photocatalytic activity of ternary Ag/g-C3N4/NaTaO3 photocatalysts under wide spectrum light radiation: the high potential band protection mechanism [J]. Appl. Catal., B: Environ., 2018, 230: 102
22 Wang F, Yang H, Zhang H, et al. Growth process and enhanced photocatalytic performance of CuBi2O4 hierarchical microcuboids decorated with AuAg alloy nanoparticles [J]. J. Mater. Sci. Mater. Electron, 2018, 29(2): 1304
23 Ma Y, Kobayashi K, Cao Y, et al. Development of visible-light-responsive morphology-controlled brookite TiO2 nanorods by site-selective loading of AuAg bimetallic nanoparticles [J]. Appl. Catal., B: Environ., 2019, 245: 681
24 Sun L, Yin Y, Lv P, et al. Green controllable synthesis of Au-Ag alloy nanoparticles using Chinese wolfberry fruit extract and their tunable photocatalytic activity [J]. RSC adv., 2018, 8(8): 3964
25 Sanabria-Arenas B E, Mazare A, Yoo J, et al. Intrinsic AuPt-alloy particles decorated on TiO2 nanotubes provide enhanced photocatalytic degradation [J]. Electrochim. Acta., 2018, 292: 865
26 Zeng D, Yang L, Zhou P, et al. AuCu alloys deposited on titanium dioxide nanosheets for efficient photocatalytic hydrogen evolution [J]. Int. J. Hydrogen Energy, 2018, 43(32): 15155
27 Zhang Y, Park S J. Au-Pd bimetallic alloy nanoparticle-decorated BiPO4 nanorods for enhanced photocatalytic oxidation of trichloroethylene [J]. J. Catal., 2017, 355: 1
28 Pugazhenthiran N, Sathishkumar P, Murugesan S, et al. Effective degradation of acid orange 10 by catalytic ozonation in the presence of Au-Bi2O3 nanoparticles [J]. Chem. Eng. J., 2011, 168(3): 1227
29 Gao X, Shang Y, Liu L, et al. Multilayer ultrathin Ag-δ-Bi2O3 with ultrafast charge transformation for enhanced photocatalytic nitrogen fixation [J]. J. Colloid Interface Sci., 2019, 533: 649
30 Yang K, Li J, Peng Y, et al. Enhanced visible light photocatalysis over Pt-loaded Bi2O3: an insight into its photogenerated charge separation, transfer and capture [J]. Phys. Chem. Chem. Phys., 2017, 19(1): 251
31 Hu H, Xiao C, Lin X, et al. Controllable fabrication of heterostructured Au/Bi2O3 with plasmon effect for efficient photodegradation of rhodamine 6G [J]. J Exp. Nanosci, 2017, 12(1): 33
32 Xian T, Di L, Sun X, et al. Photo-fenton degradation of AO7 and photocatalytic reduction of Cr (VI) over CQD-decorated BiFeO3 nanoparticles under visible and NIR light irradiation [J]. Nanoscale. Res. Lett, 2019, 14(1): 1
33 Ge M, Cao C, Li S, et al. Enhanced photocatalytic performances of n-TiO2 nanotubes by uniform creation of p-n heterojunctions with p-Bi2O3 quantum dots [J]. Nanoscale, 2015, 7(27): 11552
34 Sahoo M, Mansingh S, Parida K M. A bimetallic Au-Ag nanoalloy mounted LDH/RGO nanocomposite: a promising catalyst effective towards a coupled system for the photoredox reactions converting benzyl alcohol to benzaldehyde and nitrobenzene to aniline under visible light [J]. J. Med. Chem., 2019, 7(13): 7614
35 Sobana N, Muruganadham M, Swaminathan M. Nano-Ag particles doped TiO2 for efficientphotodegradation of Direct azo dyes [J]. J. Mol. Catal. A: Chem., 2006, 258: 124
36 Liu G, Li S, Lu Y, et al. Controllable synthesis of α-Bi2O3 and γ-Bi2O3 with high photocatalytic activity byα-Bi2O3γ-Bi2O3α-Bi2O3 transformation in a facile precipitation method [J]. J. Alloys Compd., 2016, 689: 787
37 Gelderman K, Lee L, Donne S W. Flat-band potential of a semiconductor: using the Mott-Schottky equation [J]. J. Chem. Educ., 2007, 84(4): 685
38 Wei N, Cui H, Wang C, et al. Bi2O3 nanoparticles incorporated porous TiO2 films as an effective p‐n junction with enhanced photocatalytic activity [J]. J. Am. Chem. Soc., 2017, 100(4): 1339
39 Hou W B, Hung W H, Pavaskar P, et al. Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions [J]. ACS Catal., 2011, 1(8): 929
40 Xian T, Yang H, Di L J, et al. Enhanced photocatalytic activity of BaTiO3@g-C3N4 for the degradation of methyl orange under simulated sunlight irradiation [J]. J. Alloys Compd., 2015, 622: 1098
41 Ringe E, McMahon J M, Sohn K, et al. Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach [J]. J. Phys. Chem. C, 2010, 114(29): 12511
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 王乾, 蒲磊, 贾彩霞, 李志歆, 李俊. 碳纤维/环氧复合材料界面改性的不均匀性[J]. 材料研究学报, 2023, 37(9): 668-674.
[3] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[5] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[6] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[7] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[8] 李林龙, 杨丽琪, 薛伟海, 高禩洋, 王旭, 段德莉, 李曙. 稀土改性GCr15钢与保持架材料间的滑动摩擦磨损[J]. 材料研究学报, 2023, 37(6): 408-416.
[9] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[10] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[11] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[12] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[13] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[14] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[15] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.