Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (12): 933-938    DOI: 10.11901/1005.3093.2020.153
  研究论文 本期目录 | 过刊浏览 |
低热通量下碳纤维/环氧树脂层合板的燃烧特性
陈少杰1,2, 徐艳英1,2(), 王志1,2, 胡泊1,2
1.沈阳航空航天大学安全工程学院 沈阳 110136
2.沈阳航空航天大学 辽宁省飞机火爆防控及可靠性适航技术重点实验室 沈阳 110136
Combustion Characteristics of Carbon Fiber/Epoxy Laminates at Low Heat Flux
CHEN Shaojie1,2, XU Yanying1,2(), WANG Zhi1,2, HU Po1,2
1.School of Safety Engineering, Shenyang Aerospace University, Shenyang 110136, China
2.Liaoning Key Laboratory of Aircraft Safety and Airworthiness, Shenyang Aerospace University, Shenyang 110136, China
引用本文:

陈少杰, 徐艳英, 王志, 胡泊. 低热通量下碳纤维/环氧树脂层合板的燃烧特性[J]. 材料研究学报, 2020, 34(12): 933-938.
Shaojie CHEN, Yanying XU, Zhi WANG, Po HU. Combustion Characteristics of Carbon Fiber/Epoxy Laminates at Low Heat Flux[J]. Chinese Journal of Materials Research, 2020, 34(12): 933-938.

全文: PDF(1703 KB)   HTML
摘要: 

使用锥形量热仪研究了35 kW/m2热通量下碳纤维/环氧树脂层合板的点燃时间、质量损失速率、热释放速率等燃烧特性参数与其厚度的关系,建立了热穿透深度的数学模型以得到不同厚度层合板的热穿透深度、判别层合板的热厚热薄特性并分析燃烧过程。结果表明:在低热通量下,随着碳纤维/环氧树脂层合板厚度的增加其点燃时间延长、平均质量损失速率和质量损失速率峰值下降、总释放热量增大、热释放速率峰值先增大后减小;碳纤维/环氧树脂层合板在点燃时表现为热薄型或是热厚型,与其物理厚度有直接关系。热厚型材料有一个由热厚型向热薄型转变的热响应过程。

关键词 复合材料碳纤维/环氧树脂层合板锥形量热仪燃烧特性热穿透深度    
Abstract

The combustion characteristics of carbon fiber/epoxy laminates were investigated by means of cone calorimeter at 35 kW/m2 heat flux in terms of ignition time, mass loss rate, heat release rate etc. The mathematical model of thermal penetration depth was established in order to acquire the relation of thermal penetration depth of materials with their thickness, which was a reference to differentiate the carbon designed fiber/epoxy laminate either as ‘thermally thin’ or ‘thermally thick’-type, and analyze the combustion process of laminates. The results show that with the increase of thickness of carbon fiber/epoxy resin laminate the ignition time increases, the average mass loss rate and the mass loss rate peak decrease, the total heat release increases, and the peak heat release rate increases first and then decreases. It follows that the carbon fiber/epoxy resin laminates present burning behavior as either ‘thermally thin’ or ‘thermally thick’-type may be depend upon its own physical thickness when it is ignited, and ‘thermally thick’ material has a changing thermal response process from ‘thermally thick’ to ‘thermally thin’-type during the combustion process.

Key wordscomposites    carbon fiber/epoxy laminates    cone calorimeter    combustion characteristics    heat penetration depth
收稿日期: 2020-05-07     
ZTFLH:  V258  
基金资助:辽宁省教育厅科学研究项目(JYT19065);辽宁省自然科学基金(博士启动)(20180540033)
作者简介: 陈少杰,男,1997年生,硕士生
Sample numberNumber of laminasSize (Length×Width)/mm

Thickness

/mm

Mass/g
1[0°/90°]4100×1001.2217.00
2[0°/90°]8100×1002.4531.57
3[0°/90°]12100×1003.9049.77
4[0°/90°]16100×1004.5561.78
5[0°/90°]20100×1005.6676.01
6[0°/90°]24100×1006.8090.65
7[0°/90°]32100×1008.75119.00
表1  实验用碳纤维/环氧树脂层合板样品规格参数
图1  碳纤维/环氧树脂层合板点燃时间与厚度的关系
ParameterSymbolREF
Thermal conductivity (297 K)λ0.6 W/m·K
Densityρ1350 kg/m3
Specific heatc1000 J/kg·K
表2  碳纤维/环氧树脂复合材料热物性参数
Sample number

Thickness

/mm

Heat penetration depth/mmThermally thin or thermally thick
11.221.509Thermally thin
22.452.093Thermally thick
33.902.547
44.552.796
55.662.968
66.803.191
78.753.536
表3  热穿透深度计算结果
图2  不同实验用样品剩余质量比值与时间的关系
图3  4种不同厚度碳纤维/环氧层合板的质量损失速率

Thickness

/mm

pkMLR/g·s-1

aMLR

/g·s-1

First peak

Time

/s

Second peak

Time

/s

1.220.235385--0.1227
2.450.21491160.18681510.1187
3.900.15091640.19182290.1158
4.550.14372050.18282710.0974
5.660.16462240.17163850.0908
6.800.12832580.13174300.0840
8.750.11243200.11016010.0744
表4  质量损失速率特征值
图4  热释放速率曲线

Thickness

/mm

pkHRR

/kW·m-2

Time to pkHRR

/s

HRR tig to 180 s

/kW·m-2

HRR tig to 360 s

/kW·m-2

THR

/MJ·m-2

1.22250.57123141.0687.9434.47
2.45347.83201206.44144.2756.26
3.9444.64304253.49221.789.54
4.55428.46345242.17247.65105.93
5.66386.07436159.84239.94114.43
6.8350.93515153.49234.43121.43
8.75306.23740148.71196.9167.82
表5  热释放速率特征值及总释放热
1 Sui G, Zhang Z G, Chen C L, et al. Effect of Heat Treatment on Epoxy Resins Cured by Electron Beam Radiation [J]. Chinese Journal of Materials Research, 2002, 16(6): 657
1 隋刚, 张佐光, 陈昌麒等. 热处理对电子束辐射固化环氧树脂的作用效果 [J]. 材料研究学报, 2002, 16(6): 657
2 Mouritz A.P, Gibson A.G. Fire properties of polymer composite materials[M]. Dordrecht: Springer, 2006
3 Xu Y Y, Yang Y, Shen R Q, et al. Thermal behavior and kinetics study of carbon/epoxy resin composites [J]. Polymer Composites, 2019, 40(12): 4530
4 Xu Y Y, Lv C, Shen R Q, Wang Z, et al. Experimental investigation of thermal properties and fire behavior of carbon/epoxy laminate and its foam core sandwich composite [J]. Journal of Thermal Analysis and Calorimetry, 2019, 136(3): 1237
5 He M B, Ma Z L, Liu W P, et al. Research on Pyrolysis of Carbon-Fiber Reinforced Epoxy Resin Composite Irradiated by CW Laser [J]. Modern Applied Physics, 2016, 7(01): 48
5 贺敏波, 马志亮, 刘卫平等. 连续激光辐照下碳纤维环氧树脂复合材料热解问题研究 [J]. 现代应用物理, 2016, 7(01): 48
6 Dong K. Experimental Characterization and Multi-scale Finite Element Analysis of Thermal Conduction and Thermal Expansion Properties of Textile Structural Composites [D]. Donghua University, 2018
6 董凯. 纺织结构复合材料热传导和热膨胀性质实验表征和多尺度有限元分析 [D]. 东华大学, 2018
7 Scudamore M.J.. Fire performance studies on glass-reinforced plastic laminates [J]. Fire and Materials, 1994, 18: 313
8 Lv C, Xu Y Y, Chen J, et al. The Combustion Characteristics of Carbon/Epoxy Composite Materials in Different Lamina [J]. Fire Sci Technol, 2018, 37(02): 164
8 吕超, 徐艳英, 陈健等. 不同铺层方式碳纤维/环氧复合材料的燃烧特性 [J]. 消防科学与技术, 2018, 37(02): 164
9 Babrauskas V. Ignition handbook: principles and applications to fire safety engineering, fire investigation, risk management and forensic science [M]. Fire Science Publishers. 2003
10 Mikkola E, Wichman I S. 1989. On the thermal ignition of combustible materials [J]. Fire and Materials, 14(3): 87
11 Zhang K J. The One of Thermal Physical Properties of Carbon Fiber/Epoxy-Resin Composites——Thermal Conductivity [J]. Chin Space Sci Technol, 1987, (03): 55
11 张建可. 树脂基碳纤维复合材料的热物理性能之一——导热系数 [J]. 中国空间科学技术, 1987, (03): 55
12 Yang J, Zhang H P, Zhang J, et al. Experimental Study on Plywood Burning Behaviors in Cone Calorimeter Test [J]. Journal of Combustion Science and Technology, 2006, (02): 159
12 杨昀, 张和平, 张军等. 用锥形量热仪研究胶合板的燃烧特性 [J]. 燃烧科学与技术, 2006, (02): 159
13 Guo Z D. Experimental Study on the Combustion Characteristics of the Solid Fuel For the Typical Business Kitchens [J]. J Saf Environ, 2016, 2016, (01): 133.
13 郭子东. 商业厨房典型固体可燃物燃烧性能试验 [J]. 安全与环境学报, 2016, 16(01): 133
14 Chen R Y, Lu S X, Li C H, et al. Correlation analysis of heat flux and cone calorimeter test data of commercial flame-retardant ethylene-propylene-diene monomer (EPDM) rubber [J]. Springer Netherlands, 2016, 123(1)
15 Karlsson B, Quintiere J. Enclosure fire dynamics[M]. New York, USA: CRC press. 1999
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.