Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (8): 614-620    DOI: 10.11901/1005.3093.2018.724
  研究论文 本期目录 | 过刊浏览 |
新型Ru(Ⅱ)配合物的合成及其自组装膜的光电性能
杨丽1,2,3,唐志远1,2,3,李腾腾1,2,3,段琪伟1,2,3,胡佳丽1,2,3,张素芳1,2,3,郑照强1,2,3()
1. 江西省环保材料与装备工程技术研究中心 萍乡 337055
2. 江西省工业陶瓷重点实验室 萍乡 337055
3. 萍乡学院材料与化学工程学院 萍乡 337055
Preparation and Photovoltaic Performance of Novel Ruthenium Complex and Its Self-assembly Membrane
Li YANG1,2,3,Zhiyuan TANG1,2,3,Tengteng LI1,2,3,Qiwei DUAN1,2,3,Jiali HU1,2,3,Sufang ZHANG1,2,3,Zhaoqiang ZHENG1,2,3()
1. Engineering & Technology Research Center for Environmental Protection Materials and Equipment of Jiangxi Province, Pingxiang 337055, China
2. Key Laboratory for Industrial Ceramics of Jiangxi Province, School of Materials and Chemistry Engineering, Pingxiang University, Pingxiang 337055, China
3. School of Materials and Chemistry Engineering, Pingxiang University, Pingxiang 337055, China
引用本文:

杨丽,唐志远,李腾腾,段琪伟,胡佳丽,张素芳,郑照强. 新型Ru(Ⅱ)配合物的合成及其自组装膜的光电性能[J]. 材料研究学报, 2019, 33(8): 614-620.
Li YANG, Zhiyuan TANG, Tengteng LI, Qiwei DUAN, Jiali HU, Sufang ZHANG, Zhaoqiang ZHENG. Preparation and Photovoltaic Performance of Novel Ruthenium Complex and Its Self-assembly Membrane[J]. Chinese Journal of Materials Research, 2019, 33(8): 614-620.

全文: PDF(2330 KB)   HTML
摘要: 

合成了含芘基的新型钌(Ⅱ)配合物Ru-1,用1H-NMR和MS表征了这种配合物的分子结构。TG-DSC测试结果表明,Ru-1在一个较宽的温度范围内具有良好的热稳定性。在HOPG、石墨烯基电极表面组装了钌配合物分子膜,并对其进行了AFM、电化学及紫外可见吸收光谱等光电化学分析。结果表明,自组装膜的生长是均匀的,膜材料具有可逆的氧化还原过程,在0.47 V出现可逆的氧化还原峰。紫外可见吸收光谱表明,这种膜材料在较宽的紫外可见区表现出强且宽的吸收峰。钌配合物对石墨烯、HOPG炭素电极的修饰,使这类炭素电极具有良好的光电性能和稳定性。

关键词 无机非金属材料钌配合物自组装炭素材料    
Abstract

A novel symmetrical ruthenium complex (Ru-1) bearing pyrene groups was synthesized, and its molecular structure and purity were characterized by 1H-NMR and ESI-MS. The ruthenium complex delivered ideal stability and performance over a wider range of temperature (below 400°C), which suggests that the stability of this material can satisfy the requirement of dye-sensitized solar cell. Thin films of Ru-1 complex can be prepared onto both graphene- and HOPG-electrode surface via self-assembly process, then their surface morphology and photoelectricity property were examined by means of AFM, Cyclic voltammetry and UV-vis spectroscopy. The results show that the growth of the film was uniform. A couple of sensitive and reversible redox peaks were acquired from the cyclic voltammograms of Ru-1 modified carbon electrodes, the Ru (II/III) oxidative peak was observed at 0.47 V. Uv-vis absorption spectra show that the membrane materials have intense and wide absorption peaks in a wider range, which is favorable for capture sunlight at longer wavelength. In sum, a carbon electrode of excellent photoelectric properties and stability can be obtained by modifying both graphene and HOPG electrodes with Ru-1complex.

Key wordsinorganic nonmetallic materials    Ruthenium complex    self-assembled    carbonaceous material
收稿日期: 2018-12-23     
ZTFLH:  V254  
基金资助:国家科技重大专项(No. SQ2016ZY01003836);国家自然科学基金(No. 21767023);江西省教育厅科学技术研究项目(Nos. GJJ151258);江西省教育厅科学技术研究项目(Nos. GJJ151260)
作者简介: 杨 丽,女,1988年生,博士,讲师
图1  Ru-1的合成路线
图2  Ru-1的TG-DSC曲线
图3  Ru-1的结构、自主装模型和自组装膜的AFM图
图4  不同组装时间的Ru-1单分子膜的紫外可见吸收光谱
图5  不同组装时间下Ru-1单分子膜修饰的HOPG电极的循环伏安曲线和HOPG电极表面覆盖度与组装时间的关系
图6  不同电位扫描速度条件下Ru-1修饰的石墨烯基电极的循环伏安曲线和石墨烯基电极表面的扫描速度与电流关系
[1] Gal M, Lobo-Recio M A, Marzin C, et al. Dynamic NMR conformational studies of ruthenium(II) tetraazaporphyrinogen complexes [J]. Inorg. Chem., 1994, 33: 4054
[2] Wan D, Lai S H, Zeng C C, et al. Ruthenium(II) polypyridyl complexes: synthesis, characterization and anticancer activity studies on BEL-7402 cells [J]. J. Inorg. Biochem., 2017, 173: 1
[3] Zhao J, Ma J, Nan X, et al. Effect of nanotube morphologies on multi-walled carbon nanotubes based counter electrode for dye-sensitized solar cell [J]. J. Nanosci. Nanotechnol., 2017, 17: 788
[4] Cisneros R, Beley M, Lapicque F, et al. Hydrophilic ethylene‐glycol‐based ruthenium sensitizers for aqueous dye‐sensitized solar cells [J]. Eur. J. Inorg. Chem., 2016, 2016: 33
[5] Dong Q C, Qu W S, Wang P, et al. A novel supramolecular system with multiple fluorescent states constructed by orthogonal self-assembly [J]. Polym. Chem, 2016, 7: 3827
[6] Konti G, Vougioukalakis G C, Bidikoudi M, et al. A Ru(II) molecular antenna bearing a novel bipyridine-acrylonitrile ligand: Synthesis and application in dye solar cells [J]. Polyhedron, 2014, 82: 12
[7] Kuramochi Y, Ishitani O, Ishida H. Reaction mechanisms of catalytic photochemical CO2 reduction using Re(I) and Ru(II) complexes [J]. Coord. Chem. Rev., 2018, 373: 333
[8] Cheng F X, He C X, Yu S W, et al. Highly selective SCN- fluorescent sensing by a Ru(II) complex containing functionalized polypyridine [J]. Inorg. Chim. Acta, 2017, 462: 43
[9] Butler M J, Crimmin M R. Magnesium, zinc, aluminium and gallium hydride complexes of the transition metals [J]. Chem. Commun., 2017, 53(8): 1348
[10] Wang Z M, Zhu X L, Li Y M, et al. Effect of B and Ru co-modification on structure and photocatalytic activity of TiO2 nanotubes [J]. Chin. J. Mater. Res., 2018, 32(9): 655
[10] 王竹梅, 朱晓玲, 李月明等. B和Ru共改性对TiO2纳米管阵列的结构和光催化性能的影响 [J]. 材料研究学报, 2018, 32(9): 655)
[11] Wang Y H, Qin Y, Yao M, et al. Molecular dynamics simulation of a chiral self-assembled structure of a BIC and HA system on a HOPG surface driven by hydrogen bonds [J]. Acta Phys. Chim. Sin., 2016, 32: 2255
[11] 王云赫, 秦 圆, 姚 曼等. BIC和HA体系的氢键驱动的HOPG表面手性自组装分子动力学模拟 [J]. 物理化学学报, 2016, 32: 2255
[12] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306: 666
[13] Hou D S, Lu Z Y, Li X Y, et al. Reactive molecular dynamics and experimental study of graphene-cement composites: structure, dynamics and reinforcement mechanisms [J]. Carbon, 2017, 115: 188
[14] Lv S H, Zhang J, Luo X Q, et al. Microstructure and properties for composites of graphene oxide/cement [J]. Chin. J. Mater. Res., 2018, 32(8): 233
[14] 吕生华, 张 佳, 罗潇倩等. 氧化石墨烯/水泥基复合材料的微观结构和性能 [J]. 材料研究学报, 2018, 32(8): 233)
[15] Kuilla T, Bhadra S, Yao D H, et al. Recent advances in graphene based polymer composites [J]. Prog. Polym. Sci., 2010, 35: 1350
[16] Zhao L J, Zhao F Q, Zeng B Z. Preparation and application of sunset yellow imprinted ionic liquid polymer - ionic liquid functionalized graphene composite film coated glassy carbon electrodes [J]. Electrochim. Acta, 2014, 115: 247
[17] Xu Y X, Bai H, Li G W, et al. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets [J]. J. Am. Chem. Soc., 2008, 130: 5856
[18] Yang Y C, Wu B, Liu Y Q. Synthesis of bilayer graphene via chemical vapor deposition and its optoelectronic devices [J]. Acta Phys. Sin., 2017, 66(21): 177
[18] 杨云畅, 武 斌, 刘云圻. 双层石墨烯的化学气相沉积法制备及其光电器件 [J]. 物理学报, 2017, 66(21): 177)
[19] Ratnesh R K, Mehata M S. Synthesis and optical properties of core-multi-shell CdSe/CdS/ZnS quantum dots: Surface modifications [J]. Opt. Mater., 2017, 64: 250
[20] Zaragoza-Galán G, Fowler M A, Duhamel J, et al. Synthesis and characterization of novel pyrene-dendronized porphyrins exhibiting efficient fluorescence resonance energy transfer: optical and photophysical properties [J]. Langmuir, 2012, 28: 11195
[21] Yang L, Ozawa H, Koumoto M, et al. “Janus-type” ruthenium complex bearing both phosphonic acids and pyrene groups for functionalization of ITO and HOPG Surfaces [J]. Chem. Lett., 2015, 44: 160
[22] Donley C, Dunphy D, Paine D, et al. Characterization of indium-tin oxide interfaces using X-ray photoelectron spectroscopy and redox processes of a chemisorbed probe molecule: effect of surface pretreatment conditions [J]. Langmuir, 2002, 18: 450
[23] Huet B, Raskin J P. Role of Cu foil in-situ annealing in controlling the size and thickness of CVD graphene domains [J]. Carbon, 2018, 129: 270
[24] Bessho T, Yoneda E, Yum J H, et al. New paradigm in molecular engineering of sensitizers for solar cell applications [J]. J. Am. Chem. Soc., 2009, 131: 5930
[25] Wei C, Wei H B, Yan W B, et al. Water-soluble and highly luminescent europium (III) complexes with favorable photostability and sensitive pH response behavior [J]. Inorg. Chem., 2016, 55: 10645
[26] Penfold N J W, Parnell A J, Molina M, et al. Layer-by-layer self-assembly of polyelectrolytic block copolymer worms on a planar substrate [J]. Langmuir, 2017, 33: 14425
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.