Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (8): 579-587    DOI: 10.11901/1005.3093.2018.740
  研究论文 本期目录 | 过刊浏览 |
Zn含量对Al-Zn-Mg-Cu合金挤压棒材耐剥落腐蚀性能的影响
杨臻珅1,2,刘胜胆1,2,3(),唐建国1,2,3,叶凌英1,2,3
1. 中南大学材料科学与工程学院 长沙 410083
2. 中南大学 有色金属材料科学与工程教育部重点实验室 长沙 410083
3. 中南大学 有色金属先进结构材料与制造协同创新中心 长沙 410083
Effect of Zn Content on Exfoliation Corrosion Resistance of Al-Zn-Mg-Cu Alloy Extruded Rod
Zhenshen YANG1,2,Shengdan LIU1,2,3(),Jianguo TANG1,2,3,Lingying YE1,2,3
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China
2. Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, China
3. Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Center, Central South University, Changsha 410083, China
引用本文:

杨臻珅, 刘胜胆, 唐建国, 叶凌英. Zn含量对Al-Zn-Mg-Cu合金挤压棒材耐剥落腐蚀性能的影响[J]. 材料研究学报, 2019, 33(8): 579-587.
Zhenshen YANG, Shengdan LIU, Jianguo TANG, Lingying YE. Effect of Zn Content on Exfoliation Corrosion Resistance of Al-Zn-Mg-Cu Alloy Extruded Rod[J]. Chinese Journal of Materials Research, 2019, 33(8): 579-587.

全文: PDF(14602 KB)   HTML
摘要: 

通过剥落腐蚀浸泡实验和极化曲线测试,研究了Zn含量对Al-Zn-Mg-Cu合金挤压棒材耐剥落腐蚀性能的影响,结合金相显微镜、扫描电镜、扫描透射电镜等微观组织表征方法对影响机理进行了分析和讨论。结果表明:Zn含量(质量分数)由7.93%增至9.85%时,棒材剥落腐蚀抗力下降,剥落腐蚀等级由EA变成EC,最大腐蚀深度由334 μm增至579 μm。Zn含量增加,合金中粗大第二相数量增加,时效后晶界η相尺寸和间距变小、Zn和Mg含量增加,是耐剥落腐蚀性能下降的主要原因。

关键词 金属材料Al-Zn-Mg-Cu合金剥落腐蚀Zn含量晶界η    
Abstract

The effect of Zn content on exfoliation corrosion resistance of extruded rods of Al-Zn-Mg-Cu alloy was investigated by standard exfoliation corrosion (EXCO) immersion test, and polarization curve measurement, optical microscopy (OM), scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM). The results show that exfoliation corrosion resistance of the rods decreases with the increase of Zn content (mass fraction,%) from 7.93% to 9.85%, and the exfoliation corrosion rating changes from EA to EC with the maximum corrosion depth increasing from 334 μm to 579 μm. The lower EXCO resistance caused by higher Zn content is mainly attributed to the increased number of coarse second phase in alloys, the decreased size and spacing, as well as the higher Zn and Mg content of η-phase at grain boundaries after aging.

Key wordsmetallic materials    Al-Zn-Mg-Cu alloy    exfoliation corrosion    Zn content    grain boundary η phase
收稿日期: 2019-01-03     
ZTFLH:  TG146  
基金资助:国家重点研发计划(No. 2016YFB0300901);中南大学升华育英计划(No. 20130603)
作者简介: 杨臻珅,男,1994年生,硕士
AlloysZnMgCuZrFeSiAl
1#8.0(7.93)3.2(3.30)2.2(2.19)0.14(0.15)<0.12<0.10Bal.
2#9.0(8.66)3.2(3.13)2.2(2.31)0.14(0.14)<0.12<0.10Bal.
3#10.0(9.85)3.2(3.25)2.2(2.27)0.14(0.13)<0.12<0.10Bal.
表1  实验用铝合金挤压棒材化学成分(%,质量分数)
图1  三种合金在EXCO溶液浸泡12 h及48 h数码照片
图2  三种合金在EXCO溶液中浸泡48 h后纵截面典型金相照片
图3  三种合金浸泡不同时间的腐蚀评级及浸泡48 h后剥落腐蚀最大深度
图4  三种合金的极化曲线测试结果
Alloys1#2#3#
Ecorr,SCE/mV-787±4-794±3-802±6
Icorr/μA·cm-22.553±0.0785.104±0.0946.958±0.116
表2  三种合金电化学参数
图5  三种合金典型SEM照片
图6  三种合金晶界STEM-HAADF照片
图7  三种合金的(a)晶界析出相平均长度、间距和PFZ宽度,以及(b)晶界析出相中Zn、Mg、Cu元素平均含量
图8  2#合金在EXCO溶液中短时浸泡后SEM照片
ParticlesImmersion time/minElements (%, atomic fraction)
ZnMgCuFeNaAl
A02.510.143.7013.16-80.49
202.390.253.9913.03-80.34
803.730.986.8120.39-68.09
B014.8724.0110.64--50.48
204.644.0724.47-5.4361.39
805.142.5619.16--73.14
C014.6419.5010.45--55.41
205.462.610.91--91.02
804.213.380.82--91.59
表3  图8中第二相粒子在短时浸泡过程中化学成分变化
[1] Zhang X M, Liu S D. Aerocraft aluminum alloys and their materials processing [J]. Materials China, 2013, 32(1): 39
[1] 张新明, 刘胜胆. 航空铝合金及其材料加工 [J]. 中国材料进展, 2013, 32(1): 39)
[2] Zhang X S, Chen Y J, Hu J L. Recent advances in the development of aerospace materials [J]. Prog. Aero. Sci., 2018, 97: 22
[3] Liu S D, Chen B, Li C B, et al. Mechanism of low exfoliation corrosion resistance due to slow quenching in high strength aluminium alloy [J]. Corros. Sci., 2015, 91: 203
[4] Deng Y, Yin Z M, Zhao K, et al. Effects of Sc and Zr microalloying additions and aging time at 120℃ on the corrosion behaviour of an Al-Zn-Mg alloy [J]. Corros. Sci., 2012, 65: 288
[5] Xiao T, Lin H Q, Ye L Y, et al. Effect of corrosion conditions on strength and toughness of Al-Zn-Mg aluminum alloys [J]. Chin. J. Nonferrous Met., 2016, 26(7): 1391
[5] 肖 涛, 林化强, 叶凌英等. 腐蚀条件对Al-Zn-Mg铝合金强韧性能的影响 [J]. 中国有色金属学报, 2016, 26(7): 1391)
[6] Liao W B, Liu X Y, Liu S D, et al. Effects of local corrosion on tensile properties of 7055 aluminum alloys after different aging treatments [J]. Chin. J. Nonferrous Met., 2011, 21(8): 1855
[6] 廖文博, 刘心宇, 刘胜胆等. 局部腐蚀对不同热处理状态7055铝合金拉伸性能的影响 [J]. 中国有色金属学报, 2011, 21(8): 1855)
[7] Chen Z Y, Mo Y K, Nie Z R. Effect of Zn content on the microstructure and properties of super-high strength Al-Zn-Mg-Cu alloys [J]. Metall. Mater. Trans. A, 2013, 44(8): 3910
[8] Wloka J, Hack T, Virtanen S. Influence of temper and surface condition on the exfoliation behaviour of high strength Al-Zn-Mg-Cu alloys [J]. Corros. Sci., 2007, 49(3): 1437
[9] Xie J, Meng L C, Chen J H, et al. Behavior of localized corrosion of Al-Zn-Mg-Cu alloys in relation with their Zn and Mg contents [J]. Chin. J. Nonferrous Met., 2017, 27(12): 2473
[9] 谢 娟, 孟立春, 陈江华等. Al-Zn-Mg-Cu合金的局部腐蚀行为与Zn、Mg含量的关系 [J]. 中国有色金属学报, 2017, 27(12): 2473)
[10] Lu X H, Han X L, Du Z W, et al. Effect of microstructure on exfoliation corrosion resistance in an Al-Zn-Mg alloy [J]. Mater. Charact., 2018, 135: 167
[11] Andreatta F, Terryn H, De Wit J H W. Corrosion behaviour of different tempers of AA7075 aluminium alloy [J]. Electrochim. Acta, 2004, 49(17-18): 2851
[12] Li C B, Liu S D, Wang G W, et al. Effect of cooling rate on exfoliation corrosion of Al-Zn-Mg-Cu alloy thick plate [J]. Chin. J. Mater. Res., 2013, 27(3): 259
[12] 李承波, 刘胜胆, 王国玮等. 冷却速率对Al-Zn-Mg-Cu合金厚板剥落腐蚀的影响 [J]. 材料研究学报, 2013, 27(3): 259)
[13] Li Y X, Chen K H, Huang L P, et al. Effect of copper content on microstructure and properties of super-high strength Al-Zn-Mg-Cu-Zr-Cr-Yb alloy [J]. Mater. Sci. Eng. Powder Metall., 2014, 19(5): 727
[13] 黎彦希, 陈康华, 黄兰萍等. 铜含量对Al-Zn-Mg-Cu-Zr-Cr-Yb超强铝合金组织与性能的影响 [J]. 粉末冶金材料科学与工程, 2014, 19(5): 727)
[14] Li S, Dong H G, Li P, et al. Effect of repetitious non-isothermal heat treatment on corrosion behavior of Al-Zn-Mg alloy [J]. Corros. Sci., 2018, 131: 278
[15] Robinson M J. Mathematical modelling of exfoliation corrosion in high strength aluminium alloys [J]. Corros. Sci., 1982, 22(8): 775
[16] Liu S D, Li Q, Ye L Y, et al. Effects of pre-stretching on mechanical properties and localized corrosion of 7085 aluminum alloy [J]. J. Cent. South Univ. (Sci. Technol.), 2018, 49(9): 2152
[16] 刘胜胆, 李 群, 叶凌英等. 预拉伸对7085铝合金力学及局部腐蚀性能的影响 [J]. 中南大学学报(自然科学版), 2018, 49(9): 2152)
[17] El-Amoush A S. Intergranular corrosion behavior of the 7075-T6 aluminum alloy under different annealing conditions [J]. Mater. Chem. Phys., 2011, 126(3): 607
[18] Birbilis N, Buchheit R G. Electrochemical characteristics of intermetallic phases in aluminum alloys an experimental survey and discussion [J]. J. Electrochem. Soc., 2005, 152(4): B140
[19] Sun X Y, Zhang B, Lin H Q, et al. Atom probe tomographic study of elemental segregation at grain boundaries for a peak-aged Al-Zn-Mg alloy [J]. Corros. Sci., 2014, 79: 1
[20] Zhao H, De Geuser F, da Silva A K, et al. Segregation assisted grain boundary precipitation in a model Al-Zn-Mg-Cu alloy [J]. Acta Mater., 2018, 156: 318
[21] Kamp N, Sullivan A, Tomasi R, et al. Modelling of heterogeneous precipitate distribution evolution during friction stir welding process [J]. Acta mater., 2006, 54(8): 2003
[22] Du Y, Chang Y A, Huang B Y, et al. Diffusion coefficients of some solutes in fcc and liquid Al: critical evaluation and correlation [J]. Mater. Sci. Eng. A, 2003, 363(1-2): 140
[23] Fujita T, Horita Z, Langdon T G. Using grain boundary engineering to evaluate the diffusion characteristics in ultrafine-grained Al-Mg and Al-Zn alloys [J]. Mater. Sci. Eng. A, 2004, 371(1-2): 241
[24] Wang X, Wang J, Fu C. Characterization of pitting corrosion of 7A60 aluminum alloy by EN and EIS techniques [J]. Trans. Nonferrous Met. Soc. China, 2014, 24(12): 3907
[25] Sun Y W, Pan Q L, Sun Y Q, et al. Localized corrosion behavior associated with Al7Cu2Fe intermetallic in Al-Zn-Mg-Cu-Zr alloy [J]. J. Alloys Compd., 2019, 783: 329
[26] Knight S P, Birbilis N, Muddle B C, et al. Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al-Zn-Mg-Cu alloys [J]. Corros. Sci., 2010, 52(12): 4073
[27] Li J F, Jia Z Q, Li C X, et al. Exfoliation corrosion of 7150 Al alloy with various tempers and its electrochemical impedance spectroscopy in EXCO solution [J]. Mater. Corros., 2009, 60(6): 407
[28] Dinh T V, Sun W W, Yue Y, et al. On the miniaturised sacrificial protection achieved by surface precipitation in aluminium alloys [J]. Corros. Sci., 2018, 145: 67
[29] Song M, Chen K H. Effects of the enhanced heat treatment on the mechanical properties and stress corrosion behavior of an Al-Zn-Mg alloy [J]. J. Mater. Sci., 2008, 43(15): 5265
[30] Muller I L, Galvele J R. Pitting potential of high purity binary aluminium alloys—I. Al-Cu alloys. Pitting and intergranular corrosion [J]. Corros. Sci., 1977, 17(3): 179
[31] Song R G, Dietzel W, Zhang B J, et al. Stress corrosion cracking and hydrogen embrittlement of an Al-Zn-Mg-Cu alloy [J]. Acta Mater., 2004, 52(16): 4727
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.