Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (8): 572-578    DOI: 10.11901/1005.3093.2018.742
  研究论文 本期目录 | 过刊浏览 |
粉末冶金TiVNbTa难熔高熵合金的组织和力学性能
高楠1,2,龙雁1(),彭海燕1,3,张伟华1,彭亮1
1. 华南理工大学 广东省金属新材料制备与成形重点实验室 广州 510640
2. 中国(武汉)知识产权保护中心 武汉 430023
3. 广东技术师范大学机电学院 广州 510635
Microstructure and Mechanical Properties of TiVNbTa Refractory High-Entropy Alloy Prepared by Powder Metallurgy
Nan GAO1,2,Yan LONG1(),Haiyan PENG1,3,Weihua ZHANG1,Liang PENG1
1. Guangdong Provincial Key Laboratory for Processing and Forming of Advanced Metallic Materials, Sourth China University of Technology, Guangzhou 510640,China
2. China (Wuhan) Intellectual Property Protection Center, Wuhan 430023,China
3. Guangdong Polytechnic Normal University,Guangzhou 510635,China
引用本文:

高楠, 龙雁, 彭海燕, 张伟华, 彭亮. 粉末冶金TiVNbTa难熔高熵合金的组织和力学性能[J]. 材料研究学报, 2019, 33(8): 572-578.
Nan GAO, Yan LONG, Haiyan PENG, Weihua ZHANG, Liang PENG. Microstructure and Mechanical Properties of TiVNbTa Refractory High-Entropy Alloy Prepared by Powder Metallurgy[J]. Chinese Journal of Materials Research, 2019, 33(8): 572-578.

全文: PDF(11404 KB)   HTML
摘要: 

将机械合金化(MA)与放电等离子烧结(SPS)相结合制备了难熔TiVNbTa高熵合金,研究了这种合金的机械合金化过程、相组成和显微组织,以及烧结温度和O、N含量对其力学性能的影响。结果表明:机械合金化后高熵合金粉末为BCC结构,放电等离子烧结成的块体高熵合金由BCC基体和FCC析出相组成,其析出相为TiN+TiC+TiO的复合物。烧结温度为1100℃的高熵合金具有良好的综合力学性能,压缩屈服强度达到1506.3 MPa,塑性应变为33.2%。随着烧结温度的提高,合金发生了从准脆性到塑性再到脆性断裂的转变。O和N含量的提高对高熵合金强度的影响较小,但是使其塑性显著降低。

关键词 金属材料难熔高熵合金机械合金化放电等离子烧结组织结构力学性能    
Abstract

The TiVNbTa refractory high-entropy alloy (HEA) was fabricated by mechanical alloying (MA) and spark plasma sintering (SPS). The mechanically alloying process, phase composition and microstructure as well as the effect of sintering temperature, O- and N-content on the mechanical properties of the alloy were studied. The mechanically alloyed powders present a single BCC crystal structure, while the spark plasma sintered alloy composed of a FCC matrix with precipitated phases of TiN, TiC and TiO. The alloy sintered at 1100°C performed outstanding mechanical properties with compressive yield strength of 1506 MPa and plastic strain of 33.2%, respectively. As sintering temperature increased, the alloy fracture mechanism basically transformed from quasi-brittle fracture to ductile fracture, and finally to brittle fracture. The increase of O- and N-content had little effect on the strength of the alloy, but negative effect obviously on its plasticity.

Key wordsmetallic materials    refractory high-entropy alloys    mechanically alloying    spark plasma sintering    microstructure    mechanical properties
收稿日期: 2019-01-04     
ZTFLH:  TG146  
基金资助:广东省科技计划(No. 2015A010105011)
作者简介: 高 楠,男,1991年生,硕士生
图1  球磨不同时间的TiVNbTa合金粉末的XRD图谱
图2  烧结温度不同的TiVNbTa合金的XRD图谱
图3  在1100℃烧结的TiVNbTa合金的SEM背散射形貌
图4  在1100℃烧结的TiVNbTa合金的TEM明场像,附图为BCC相沿[001]轴的选区衍射斑点和FCC相沿[011]轴的选区衍射斑点
RegionTiVNbTaCNO
BCC19.728.627.123.8-0.8-
FCC48.71.31.20.614.323.510.4
表1  块体TiVNbTa合金的EDS/TEM成分分析
图5  在不同温度烧结的块体TiVNbTa高熵合金的压缩工程应力-应变曲线
图6  不同烧结温度下TiVNbTa合金的断口形貌
ElementsON
Powder A2.60.5
Powder B3.61.0
HEA12.40.5
HEA22.71.1
表2  TiVNbTa合金的O、N含量
图7  烧结温度为1100、1200、1300℃的HEA1和HEA2合金的金相组织形貌
图8  HEA1与HEA2的屈服强度和塑性应变比较
[1] Yeh J W. High-entropy multi-element alloys [P]. US20020159914.
[2] Yeh J W, Chen S K, Lin S J, et al. Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6(5): 299
[3] Zhang L S, Ma G L, Fu L C, et al. Recent progress in high-entropy alloys[ J]. Adv. Mater. Res., 2013, 631(3): 227
[4] Ren M X, Li B S, Fu H Z. Formation condition of solid solution type high-entropy alloy [J]. T. Nonferr. Metal. Soc., 2013, 23(4): 991
[5] Yang X, Zhang Y, Liaw P K. Microstructure and Compressive Properties of NbTiVTaAlx High Entropy Alloys [J]. Procedia Engineering, 2012, 36(6): 292
[6] Zhang L S, Ma G L, Fu L C, et al. Recent Progress in High-Entropy Alloys [J]. Adv. Mater. Res., 2013, 631(3): 227
[7] Hsu C Y, Yeh J W, Chen S K, et al. Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl0.5Fe alloy with boron addition [J]. Metall. Mater. Trans. A, 2004, 35(5): 1465
[8] Pickering E J, Jones N G. High-entropy alloys: a critical assessment of their founding principles and future prospects [J]. Int. Mater. Rev., 2016, 61(3): 183
[9] Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Prog. Mater. Sci., 2014, 61(8): 1
[10] Bhadeshia H K D H. Editorial: High entropy alloys [J]. Mater. Sci. Tech-lond., 2015, 31(1): 1139
[11] Gao M C, Yeh J W, Liaw P K, Zhang Y. High-Entropy Alloys [M]. Switzerland: Springer International Publishing, 2016
[12] Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta. Mater., 2017, 122: 448
[13] Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys [J]. Intermetallics, 2010, 18(9): 1758
[14] Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19(5): 698
[15] Senkov O N, Semiatin S L. Microstructure and properties of a refractory high-entropy alloy after cold working [J]. J. Alloys. Compd., 2015, 649(1): 1110
[16] Senkov O N, Senkova S V, Woodward C, et al. Low-density, refractory multi-principal element alloys of the Cr-Nb-Ti-V-Zr system: Microstructure and phase analysis [J]. Acta. Mater., 2013, 61(5): 1545
[17] Liu C M, Wang H M, Zhang S Q, et al. Microstructure and oxidation behavior of new refractory high entropy alloys [J]. J. Alloys. Compd., 2014, 583(3): 162
[18] Lin C M, Juan C C, Chang C H, et al. Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys [J]. J. Alloys. Compd., 2015, 624(5): 100
[19] Stepanov N D, Shaysultanov D G, Salishchev G A, et al. Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy [J]. Mater. Lett., 2015, 142: 153
[20] Wang J, Huang W G. Microstructure and mechanical properties of CrMoVNbFex high-entropy alloys [J]. Chinese Journal of Material Research, 2016, 30(8): 609
[20] 王 江, 黄维刚. CrMoVNbFex高熵合金微观组织结构与力学性能 [J]. 材料研究学报, 2016, 30(8): 609)
[21] Yavari A R, Desr? P J, Benameur T. Mechanically driven alloying of immiscible elements [J]. Phys. Rev. Lett., 1992, 68(14): 2235
[22] Huang J Y, Yu Y D, Wu Y K, et al. Microstructure and nanoscale composition analysis of the mechanical alloying of FexCu100-x (x=16, 6) [J]. Acta. Mater., 1997, 45(1): 113
[23] Macdonald B E, Fu Z, Zheng B, et al. Recent progress in high entropy alloy research [J]. JOM, 2017, 69(10): 1
[24] Nagasaki Seizo, Hirabayashi Makoto, Liu A S. Binary Alloy Phase-diagrams [M]. Beijing: Metallurgical Industry Press, 2004
[24] 长崎诚三, 平林真, 刘安生. 二元合金状态图集 [M]. 北京: 冶金工业出版社, 2004
[25] Li X R, Shuai M B. Effect of oxygen on the microstructure and mechanical properties of 95W-3.15Ni-1.35Fe-0.5Co alloy [J]. Rare Metal and Cemented Carbides, 2005, 33(3): 12
[25] 李先容, 帅茂兵. 氧对95W-315Ni-135Fe-0.5Co合金组织及力学性能的影响 [J]. 稀有金属与硬质合金, 2005, 33(3): 12
[26] Qi Y X, Jiang C. Sam and xps analysis of manufacturing defects in 95W-Ni-Fe alloy [J]. Ordn. Mater. Sci. Eng., 1997, 20(5): 36
[26] 齐芸馨, 姜 春. 95W-Ni-Fe合金工艺缺陷的SAM和XPS分析 [J]. 兵器材料科学与工程, 1997, 20(5): 36
[27] Gao Z Z, Kang Z J, Zheng Q. Effect of oxygen content on structure and properties of W-Ni-Fe heavy alloy [J]. Chinese Journal of Rare Metals, 1999, 23(2): 81
[27] 高兆祖, 康志君, 郑 强. 氧含量对W-Ni-Fe合金组织性能的影响 [J]. 稀有金属, 1999, 23(2): 81
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[14] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[15] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.