Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (12): 909-917    DOI: 10.11901/1005.3093.2019.258
  研究论文 本期目录 | 过刊浏览 |
P91热轧无缝钢管的TMCP模拟
王晓东1,2,郭锋1(),包喜荣3,王宝峰3
1. 内蒙古工业大学材料科学与工程学院 呼和浩特 010051
2. 内蒙古科技大学矿业与煤炭学院 包头 014010
3. 内蒙古科技大学材料与冶金学院 包头 014010
TMCP Simulation for Hot Rolling of P91 Seamless Steel Pipe
Xiaodong WANG1,2,Feng GUO1(),Xirong BAO3,Baofeng WANG3
1. School of Materials Science & Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
2. School of Mining & Coal, Inner Mongolia University of Science & Technology, Baotou 014010, China
3. School of Material & Metallurgy, Inner Mongolia University of Science & Technology, Baotou 014010, China
引用本文:

王晓东,郭锋,包喜荣,王宝峰. P91热轧无缝钢管的TMCP模拟[J]. 材料研究学报, 2019, 33(12): 909-917.
Xiaodong WANG, Feng GUO, Xirong BAO, Baofeng WANG. TMCP Simulation for Hot Rolling of P91 Seamless Steel Pipe[J]. Chinese Journal of Materials Research, 2019, 33(12): 909-917.

全文: PDF(4631 KB)   HTML
摘要: 

基于无缝钢管PQF工艺并结合其动态相变规律研究结果,制定P91热轧无缝钢管TMCP,使用Gleeble1500-D热模拟试验机对P91钢进行TMCP穿孔、连轧及定径热变形模拟,使用SEM和TEM观察变形各阶段的精细组织结构,分析P91钢管在TMCP条件下的微观组织遗传规律,研究了形变奥氏体的细化、强化及其马氏体相变行为。结果表明:对于P91钢管,采用TMCP,穿孔及连轧真应变达1.8的高温大变形易实现再结晶、细化形变奥氏体晶粒,990℃低温定径变形累积强化形变奥氏体、诱导马氏体相变,结合1℃/s的控制冷却得到了细化至0.1~0.5 μm的马氏体板条。还发现,板条内的亚结构为2~20 nm的微细孪晶及高密度位错,析出了20 nm×100 nm的(Cr,Fe,Mo)23C6纳米级碳化物。这种组织特征遗传了P91钢管TMCP细晶强化、析出强化及相变强化效果,大大提高了P91钢管的力学性能,并由实际生产验证了P91钢管TMCP的可行性。

关键词 金属材料热机械控制工艺实验模拟P91形变相变    
Abstract

The thermal mechanical control processing (TMCP) for hot-rolling of P91 seamless steel pipe was designed based on the features of PQF process and the relevant research results of its dynamic phase transition regularities. Then the hot deformation processes for piercing, continuous rolling and sizing of P91 pipe were simulated by means of Gleeble-1500D thermal-mechanical simulator. Whilst the microstructural evolution of P91 pipe during TMCP was assessed by SEM and TEM, and the refinement and strengthening of deformed austenite and its martensitic transformation behavior were also investigated. The results show that the large deformation at higher temperature with true strain of 1.8 during piercing and continuous rolling may benefit the recrystallization and the refinement of deformed austenite grains, while the accumulation of sizing deformation at 990℃ may strengthen the deformed austenite and induce the martensitic transformation during the TMCP of P91 pipe. Martensite laths with a thickness of 0.1~0.5 μm were obtained via proper controlled cooling of 1℃/s. Fine twins of 2~20 nm and high density dislocations were found in Martensite laths. The nanoscale precipitates of (Cr,Fe,Mo)23C6 with a size of about 20 nm×100 nm were found between the laths of the martensite. This structure characteristic is the imprint of the TMCP effect of fine grain strengthening, precipitation strengthening and phasetransformation strengthening, which can greatly improve the mechanical properties of P91 pipe. The feasibility of TMCP for P91 pipe was verified by the actual production.

Key wordsmetallic materials    TMCP    experimental simulation    P91    deformation    phase transition
收稿日期: 2019-05-20     
ZTFLH:  TG335.71  
基金资助:国家自然科学基金(51461034);内蒙古自治区自然科学基金(2014MS0532);内蒙古科技大学创新基金(2014QDL036)
作者简介: 王晓东,男,1978年生,博士,副教授
CSiMnPSCrMoVNbNNi
0.090.320.490.0180.0039.000.900.200.100.030.02
表1  P91的化学成分表(质量分数,%)
PassEquivalent strain

Temperature

/℃

Strain rate /s-1

Interval

time/s

Heating-1290--
Piercing1.3031250250
PQF10.153112530.853
PQF20.15111241.004
PQF30.104109840.678
PQF40.056108830.645
PQF50.0121080250
Sizing10.019104022
Sizing 20.015103622
Sizing 30.016102522
Sizing 40.015101822
Sizing 50.015100422
Sizing 60.00899622
Sizing 70.0089902-
表2  P91钢管TMCP穿孔+PQF连轧+定径模拟工艺参数
图1  P91钢在不同变形条件下的热膨胀曲线(冷速均为1℃/s )
图2  P91钢在不同变形、冷却条件下的SEM组织
图3  P91钢TMCP热模拟穿孔、连轧和定径的真应力-真应变曲线
图4  P91钢TMCP热模拟穿孔、连轧和定径后的微观组织
图5  P91钢TMCP定径后控制冷却的SEM组织
图6  P91钢TMCP定径后控制冷速为1℃/s的亚结构和析出物
图7  Thermo-Calc计算 P91钢的碳化物析出曲线和M23C6成分变化曲线
Temperature/℃CrFeMoVC
86049.2022.276.321.3920.69
2067.750.3010.340.9120.69
表3  P91钢中M23C6碳化物中各元素的原子分数
图8  P91钢管的TMCP成品管及其微观组织
[1] Wang X F, Wu R D, Deng C X, et al. Mechanical properties of new heat-resistant high-tensile steel P91 at high temperature [J]. Chin. J. Mech. Eng., 2008, 44(6): 243
[1] (王雪凤, 吴任东, 邓晨曦等. 新型耐热高强钢P91的高温力学性能 [J]. 机械工程学报, 2008, 44(6): 243)
[2] Zhu F X, Liu C, Chui G Z, et al. Effect of hot deformation parameters on recrystallization of steel T91 [J]. Acta Metall. Sin. (Eng. Lett.), 2000, 13(1: 335
[3] Ning B Q, Liu Y C, Xu R L, et al. Effects of thermomechanical treatment on microstructure and mechanical properties of T91 steel [J]. Chin. J. Mater. Res., 2008, 22(2): 191
[3] (宁保群, 刘永长, 徐荣雷等. 形变热处理对T91钢组织和性能的影响 [J]. 材料研究学报, 2008, 22(2): 191)
[4] Lee Y, Kim S I, Choi S, et al. Mathematical model to simulate thermo-mechanical controlled processing in rod (or bar) rolling [J]. Met. Mater. Int., 2001, 7: 519
[5] Xue X H, Shan Y Y, Zheng L, et al. Microstructural characteristic of low carbon microalloyed steels produced by thermo-mechanical controlled process [J]. Mater. Sci. Eng., 2006, 438-440A: 285
[6] Kong X W, Lan L Y, Hu Z Y, et al. Optimization of mechanical properties of high strength bainitic steel using thermo-mechanical control and accelerated cooling process [J]. J. Mater. Process. Technol., 2015, 217: 202
[7] Wang G D. Development of TMCP and envisaged application to steel tube rolling [J]. Steel Pipe, 2011, 40(2): 1
[7] (王国栋. 控轧控冷技术的发展及在钢管轧制中应用的设想 [J]. 钢管, 2011, 40(2): 1)
[8] Peng L Z, Chen L M, Du X L, et al. A brief analysis on application of TMCP to seamless steel tube production [J]. Steel Pipe, 2013, 42(4): 7
[8] (彭龙洲, 陈利明, 杜新立等. 简析控轧控冷技术在无缝钢管生产中的应用 [J]. 钢管, 2013, 42(4): 7)
[9] Lv W D, Cheng J F, Tang G B. Development of controlled cooling technology and its application for hot rolled steel pipe [J]. Shanghai Met., 2015, 37(2): 45
[9] (吕卫东, 程杰锋, 唐广波. 控制冷却技术的发展及其在热轧钢管过程的应用 [J]. 上海金属, 2015, 37(2): 45)
[10] Wang X D, Guo F, Bao X R, et al. Application and research of thermo-mechanical control process for steel tube rolling [J]. Hot Work. Technol., 2016, 46(15): 20
[10] (王晓东, 郭 锋, 包喜荣等. 钢管轧制热机械控制工艺的应用与研究 [J]. 热加工工艺, 2016, 46(15): 20)
[11] The Timken Company. Controlled thermo-mechanical processing of tubes and pipes for enhanced manufacturing and performance [R]. Canton: The Timken Company, 2005
[12] Jin D, Dominik E D, Kolarik II R V, et al. Modeling of controlled thermo-mechanical processing of tubes for enhanced manufacturing and performance [J]. Acta Metall. Sin. (Eng. Lett.), 2000, 13(2: 832
[13] Anelli E, Cumino G, Gonalez C. Metallurgical design of accelerated-cooling process for seamless pipe production [A]. Proceedings from Materials Solutions’97 on Accelerated Cooling/Direct Quen-ching of Steels [C]. Indiana, 1997
[14] Wang X D, Bao X R, Guo F, et al. Simulated research on recrystallization controlled rolling of P110 oil casing [J]. Hot Work. Technol., 2013, 43(3): 47
[14] (王晓东, 包喜荣, 郭 锋等. P110钢级石油套管再结晶型控制轧制模拟研究 [J]. 热加工工艺, 2013, 43(3): 47)
[15] Wang X D, Guo F, Bao X R, et al. Research on TMCP in the rolling of 30MnCr22 seamless pipe based on PQF [J]. Trans. Mater. Heat Treat., 2015, 36(Suppl.2): 57
[15] (王晓东, 郭 锋, 包喜荣等. 基于PQF的30MnCr22无缝钢管TMCP的实验研究 [J]. 材料热处理学报, 2015, 36(Suppl.2): 57)
[16] Wang X D, Guo F, Wang B F, et al. Establishment of a full scale physical simulation platform for controlled cooling of steel tubes and research on heat transfer boundary conditions [J]. J. Mech. Eng., 2018, 54(24): 69
[16] (王晓东, 郭 锋, 王宝峰等. 钢管控制冷却物理模拟平台的建立及传热边界条件的确定 [J]. 机械工程学报, 2018, 54 (24): 69)
[17] Wang Y M, Li M Y, Wei G. Controlled Rolling and Controlled Cooling of Steel 2nd ed. [M]. Beijing: Metallurgical Industry Press, 2009
[17] (王有铭, 李曼云, 韦 光. 钢材的控制轧制和控制冷却. 第2版. [M]. 北京: 冶金工业出版, 2009)
[18] Yu W, Chen Y L, Chen Y L, et al. On-line thermomechanical treatment process for N-80 grade oil casing [J]. J. Univ. Sci. Technol. Beijing, 2002, 24: 643
[18] (余 伟, 陈银莉, 陈雨来等. N80级石油套管在线形变热处理工艺 [J]. 北京科技大学学报, 2002, 24: 643)
[19] Liu Y Z, Liu Z, Xu J Q, et al. Experimental study on optimization of rolling process for non-quenched and tempered N80 oil casings [J]. Iron Steel, 2006, 41(7): 41
[19] (刘雅政, 刘 照, 徐进桥等. 非调质N80石油套管轧制工艺优化的实验研究 [J]. 钢铁, 2006, 41(7): 41)
[20] Tao X Z, Zhao Y H, Liu D S, et al. On-line heat treatment process for steel pipe with water quenching [J]. Steel Pipe, 2006, 35(2): 21
[20] (陶学智, 赵永恒, 刘东升等. 钢管在线水淬热处理工艺 [J]. 钢管, 2006, 35(2): 21)
[21] He Y Z, Chen D H, Lei T Q, et al. Mathematical modeling of the dependence of grain size on zener-hollomon parameter during dynamic recrystallization [J]. J. Iron Steel Res., 2000, 12: 26
[21] (何宜柱, 陈大宏, 雷廷权等. 形变Z因子与动态再结晶晶粒尺寸间的理论模型 [J]. 钢铁研究学报, 2000, 12: 26)
[22] Zhang H B, Zhang B, Liu J T. Dynamics measurement and mathematical models of dynamic recrystallization of steel [J]. J. Shanghai Jiaotong Univ., 2003, 37: 1053
[22] (张鸿冰, 张 斌, 柳建韬. 钢中动态再结晶力学测定及其数学模型 [J]. 上海交通大学学报, 2003, 37: 1053)
[23] Zhang B, Zhang H B, Ruan X Y. Dynamic recrystallization behavior of 35CrMo structural steel [J]. J. Cent. South Univ. Technol., 2003, 10: 13
[24] Han B J. Research on the grain ultra-refinement in Austenite by dynamic recrystallization in austenite and its martensitic transformation [D]. Shanghai: Shanghai Jiaotong University, 2008
[24] (韩宝军. 奥氏体动态再结晶晶粒超细化及其马氏体相变研究 [D]. 上海: 上海交通大学, 2008)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.