Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (12): 897-908    DOI: 10.11901/1005.3093.2019.288
  研究论文 本期目录 | 过刊浏览 |
DP600双相钢在两种盐雾实验条件下的腐蚀行为对比研究
吕良兴1,周和荣1,2(),肖葵2,但佳永1,姚望1,吴磊1,段凯欣3
1. 武汉科技大学材料与冶金学院 武汉 430081
2. 北京科技大学 腐蚀与防护教育部重点实验室 北京 100083
3. 北京福田戴姆勒汽车有限公司 北京 101400
Corrosion Behavior of DP600 Dual Phase Steel in Two Accelerated Test Environments
Liangxing LV1,Herong ZHOU1,2(),Kui XIAO2,Jiayong DAN1,Wang YAO1,Lei WU1,Kaixin DUAN3
1. School of Materials and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2. Key Laboratory of Corrosion and Protection,University of Science and Technology Beijing, Beijing 100083, China
3. Beijing Foton Daimler Automobile Company,Beijing 101400, China
引用本文:

吕良兴,周和荣,肖葵,但佳永,姚望,吴磊,段凯欣. DP600双相钢在两种盐雾实验条件下的腐蚀行为对比研究[J]. 材料研究学报, 2019, 33(12): 897-908.
Liangxing LV, Herong ZHOU, Kui XIAO, Jiayong DAN, Wang YAO, Lei WU, Kaixin DUAN. Corrosion Behavior of DP600 Dual Phase Steel in Two Accelerated Test Environments[J]. Chinese Journal of Materials Research, 2019, 33(12): 897-908.

全文: PDF(9822 KB)   HTML
摘要: 

采用SEM、EDS、XRD以及EIS等技术,对比研究了DP600双相钢在中性盐雾(NSS)实验和循环盐雾腐蚀实验(CCT)两种不同加速实验条件下的腐蚀行为,并获得了腐蚀动力学规律。结果表明:在两种加速实验条件下,试样腐蚀失重均逐步增加,且CCT中的大于NSS中的;同时,初期腐蚀速率相差不大,在480 h时腐蚀速率均达到最大值,分别为1.89 g·m-2·h-1(NSS)和2.72 g·m-2·h-1(CCT)。两种实验条件下腐蚀产物主要是Fe3O4α-FeOOH、γ-FeOOH、δ-FeOOH和α-Fe2O3,而CCT条件下同时也形成了较多的β-FeOOH。CCT条件下的锈层厚度大于NSS条件下的,且厚度增加趋势也更快。EIS结果表明:两种加速实验条件下试样溶液电阻和腐蚀产物膜电阻均逐步增大,电荷转移电阻均为先减小后增加。实验前期(≤480 h),NSS和CCT条件下的腐蚀速率可分别表达为:ΔD1-1=0.7349t0.1522,ΔD2-1=0.3511t0.3313;而在实验后期(>480 h),则分别为:ΔD1-2=14.6239t-0.3236,ΔD2-2=6.8542t-0.1570

关键词 金属材料双相钢中性盐雾实验循环腐蚀实验腐蚀速率模型    
Abstract

Corrosion behavior of DP600 dual phase steel in two different accelerated test environments, namely neutral salt spray (NSS) test and cyclic salt spray corrosion test (CCT) was comparatively assessed by means of SEM, EDS, XRD and EIS. Results show that the corrosion mass loss of the steel in the two environments was gradually increased, and the amount of mass loss in CCT was higher than in NSS test. At the same time, there was no significant difference in the initial corrosion rate, however the maximum corrosion rate reached 1.89 g·m-2·h-1 (NSS) and 2.72 g·m-2·h-1(CCT) at 480 h respectively. The rust layer of the steel after the NSS test composed of Fe3O4, α-FeOOH, γ-FeOOH, δ-FeOOH and α-Fe2O3, besides, there existed significant amount of β-FeOOH for the rust layer of the steel after CCT test. The rust layer of the steel after CCT test is thicker than that after NSS test, whilst the thickness increases faster for the former rust layer. The EIS results show that the resistance of sample solution and corrosion product film are gradually increased in both accelerated tests, furthermore the charge transfer resistance decreased first and then increased. The corrosion rate of the steel during NSS test and CCT test can be described as: ΔD1-1=0.7349t0.1522 and ΔD2-1=0.3511t0.3313 for the early stage (t≤480 h), while ΔD1-2=14.6239t-0.3236 and ΔD2-2=6.8542t-0.157 for the later stage (t>480 h) respectively.

Key wordsmetallic materials    dual phase steel    neutral salt spray test    cyclic salt spray corrosion test    corrosion rate model
收稿日期: 2019-06-04     
ZTFLH:  TG172.3  
基金资助:国家自然科学基金(50971048);国家科技基础条件平台建设专题(汽车腐蚀专项)
作者简介: 吕良兴,男,1993年生,硕士生
SteelCSMnSiPFe
DP6000.090.0051.840.360.02Bal.
表1  DP600双相钢主要化学成分(质量分数,%)
图1  DP600双相钢轧向截面和横向截面的金相组织
图2  DP600双相钢在两种加速实验条件下的腐蚀失重及腐蚀速率变化曲线
StageAnR2
1-10.73491.15220.9937
1-214.62390.67640.9342
2-10.35111.33130.9988
2-26.85420.84300.9849
表2  腐蚀动力学拟合相关参数
图3  DP600双相钢在两种加速腐蚀实验后的表面形貌
图6  DP600双相钢在加速实验1200 h后腐蚀产物的XRD谱
图4  DP600双相钢试样在NSS实验后的截面形貌与EDS分析
图5  DP600双相钢试样在CCT实验后的截面形貌与EDS分析
图7  DP600钢在两种加速实验条件下腐蚀不同时间后表面锈层的拉曼光谱
图8  DP600双相钢在两种加速实验条件下腐蚀不同时间后的电化学阻抗谱
图9  DP600双相钢阻抗等效电路图
TimeRs/Ω·cm2

Qr

-1·cm-2·S-nr

nrRr /Ω·cm2

Qdl

-1·cm-2·S-ndl

ndl

Rct

/Ω·cm2

Aw

/10-3 Ω·cm2·S-1/2

120 h3.3911.05×10-20.526351.57.746
240 h4.0759.8×10-30.514214.41.047
480 h11.21.15×10-40.90391.251.35×10-30.554188.51.015
720 h15.982.13×10-40.898136.61.71×10-40.65261.880.125
960 h17.591.96×10-40.919168.62.87×10-30.585348.010.04
1200 h32.712.88×10-40.922298.81.13×10-30.591409.50.013
表3  DP600双相钢在NSS实验下电化学阻抗谱拟合结果
TimeRs/Ω·cm2

Qr

-1·cm-2·S-nr

nrRr /Ω·cm2

Qdl

-1·cm-2·S-ndl

ndlRct/Ω·cm2

Aw

/10-3 Ω·cm2·S-1/2

120 h1.7437.08×10-20.54310.811.11×10-20.862196.84.538
240 h2.2949.3×10-40.83212.582.31×10-30.847159.64.715
480 h13.586.59×10-40.60514.412.51×10-30.82393.52.512
720 h15.496.32×10-40.58522.641.61×10-30.886123.74.741
960 h16.513.61×10-40.63735.011.86×10-30.869130.85.636
1200 h18.325.07×10-40.68948.362.13×10-30.824125.40.762
表4  DP600双相钢在CCT下电化学阻抗谱拟合结果
图10  两种加速实验条件下试样腐蚀速率拟合规律与测试数据的对比
图11  两种盐雾加速实验工作流程图
[1] Ke W. Current investigation into the corrosion cost in China [J]. Total Corros. Control, 2003, 17(1): 1
[1] (柯 伟. 中国工业与自然环境腐蚀调查 [J]. 全面腐蚀控制, 2003, 17(1): 1)
[2] Prosek Tomas, Nazarov Andrej, Goodwin Frank, et al. Improving corrosion stability of Zn-Al-Mg by alloying for protection of car bodies [J]. Sur. Coat. Technol., 2016, 306: 439
[3] Zhu R Q. Deformation and fracture behavior of hot-rolled DP600 automotive steel [D]. Wuhan: Wuhan University of Science and Technology, 2018
[3] (朱瑞琪. 热轧DP600汽车用钢变形及断裂行为研究 [D]. 武汉:武汉科技大学, 2018)
[4] Ma C, Chen D L, Bhole S D, et al. Microstructure and fracture characteristics of spot-welded DP600 steel [J]. Mater. Sci. Eng. A, 2008, 485(1-2): 334
[5] Wang Z Y. Research on atmospheric corrosion of metal materials [J]. Total Corros. Control, 1995, 4: 1
[5] (王振尧. 金属材料大气腐蚀研究动态 [J]. 全面腐蚀控制, 1995, 4: 1)
[6] Tang Y, Song A M. Effect of salt spray conditions on test results [J]. Microelectron., 2009, 39: 289
[7] Yao W, Zhou H R, Xiao K, et al. Corrosion behavior of DC06 extra deep drawing cold rolled steel in neutral salt spray test, [J]. J. Chin. Soc. Corros. Prot., 2018, 38(3): 241
[7] (姚 望, 周和荣, 肖 葵等. 中性盐雾环境中DC06超深冲钢的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2018, 38(3): 241)
[8] Wang Z Y, Yu G C, Han W. Investigation on interrelation of indoor accelerated corrosion and atmospheric exposure corrosion of steels [J]. Corros. Sci. Prot. Technol., 2004(2): 70
[8] (王振尧, 于国才, 韩 薇. 钢的大气暴露腐蚀与室内模拟加速腐蚀的相关性 [J]. 腐蚀科学与防护技术, 2004(2): 70)
[9] Zhang S, Zhang T, He Y T, et al. Long-term atmospheric corrosion of aluminum alloy2024-T4 in coastal environment: Surface and sectional corrosion behavior [J]. J. Alloy. Compd., 2019, 789: 460
[10] Wang X, Xiao K, Chen X Q, et al. Corrosion prediction model of Q235 steel in polluted marine atmospheric environment [J]. J. Mater. Eng., 2017, 45(4): 51
[10] (王 旭, 肖 葵, 程学群等. Q235钢的污染海洋大气环境腐蚀寿命预测模型 [J]. 材料工程, 2017, 45(4): 51)
[11] Dou T T, Kang Y L, Yu H, et al. Research on microstructure and property of continuous galvanizing dual phase steel DP600 [J]. J. Mater. Eng., 2006(S1): 120
[11] (窦婷婷, 康永林, 于 浩等. 连续镀锌DP600双相钢的组织与性能研究 [J]. 材料工程, 2006(S1): 120
[12] Marco J K, Gracia M, Gancedo J R, et al. Characterization of the corrosion products formed on carbon steel after exposure to the open atmosphere in the Antarctic and Easter Island [J]. Corros. Sci., 2000, 42(4): 753
[13] Ma Y T, Li Y, Wang F H. The effect of β-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment [J]. Mater. Chem. Phys., 2008, 112: 844
[14] Kamimura T, Stratmann M. The influence of chromium on the atmospheric corrosion of steel [J]. Corros. Sci., 2001, 43: 429
[15] Cao G W, Liu Y W, Zhang D D, et al. Corrosion behavior of Q235 and Q345 carbon steel in Hongyuanhe atmosphere [J]. Corros. Prot., 2018, 39(1): 24
[15] (曹公望, 刘雨薇, 张丹丹等. Q235和Q345钢在红沿河大气环境中的腐蚀行为 [J]. 腐蚀与防护, 2018, 39(1): 24)
[16] Xiao K, Dong C F, Li X G, et al. Corrosion products and formation mechanism during initial stage of atmospheric corrosion of carbon steel [J]. J. Iron. Steel Res. Int., 2008, 15(5): 42
[17] Li Q. The study on the corrosion behavior of weathering steel containing Ni in simulated industrial marine atmosphere [D]. Shenyang: Dongbei University, 2015
[17] (李 青. 模拟工业海洋气氛下含Ni耐候钢的腐蚀行为研究 [D]. 沈阳: 东北大学, 2015)
[18] Sei J, Oh, D.C. Cook. et al. Townsend, Atmospheric corrosion of different steels in marine, rural and industrial environments [J]. Corros. Sci., 1999, 41(9): 1687
[19] Xu Z X, Zhou H R, Yao W. Corrosion behavior of automotive cold rolled steel DC06 and DP600 in NaHSO3 solution [J]. J. Chin. Soc. Corros. Prot., 2017, 37(2): 155
[19] (徐致孝, 周和荣, 姚 望. 汽车冷轧钢DC06和DP600在NaHSO3溶液中的腐蚀行为 [J]. 中国腐蚀与防护学报, 2017, 37(02): 155)
[20] You M R, Jin P, Tan X M, et al. Effects of temperature and chloride ion concentration on corrosion rate of 30CrMnSiNiA [J]. Equip. Environ. Eng., 2017, 14(09): 93
[20] (游明锐, 金 平, 谭晓明等. 温度和氯离子浓度对30CrMnSiNiA腐蚀速率的影响研究 [J]. 装备环境工程, 2017, 14(09): 93)
[21] Xie J L, Jin K F, Jiang X B, et al. Corrosion behavior of rusted carbon steel in diluted NaCl solution [J]. Surf. Technol., 2014, 43(2): 55
[21] (谢建丽, 金凯峰, 蒋晓斌等. 带锈碳钢在稀NaCl溶液中的腐蚀行为 [J]. 表面技术, 2014, 43(2): 55)
[22] Hoerle S, Mazaudier F, Dillmann P, et al. Advances in understanding atmospheric corrosion of iron II. mechanistic modeling of wet-dry cycles [J]. Corros. Sci., 2004, 46: 1431
[23] Song L Y. The role of UV illumination on the atmospheric corrosion of Q235 carbon steel and 09CuPCrNi weathering steel [D]. Qingdao: Graduate School of the Chinese Academy of Sciences (Ocean Institute), 2015
[23] (宋立英. 紫外辐射对Q235碳钢/09CuPCrNi耐候钢大气腐蚀过程影响机制的研究 [D]. 青岛: 中国科学院研究生院(海洋研究所), 2015)
[24] Li X G, Dong C F, Xiao K. Corrosion (aging) Behavior and Mechanism of Typical Materials in Xisha Marine Atmosphere [M]. Beijing: Science Press, 2014: 49
[24] (李晓刚, 董超芳, 肖 葵著. 西沙海洋大气环境下典型材料腐蚀(老化)行为与机理 [M]. 北京: 科学出版社, 2014: 49)
[25] Asami K, Kikichi M. In-depth distribution of rusts on plain carbon steel and weathering steel exposed to coastal-industrial atmosphere for 17 years [J]. Corros. Sci., 2003, 45(11): 2671
[26] Singh A K, Ericsson T, Hggstrom L, et al. Characterization of Delhi iron pillar rust by X-ray diffraction, Fourier transform infrared spectroscopy and Mossbauer spectroscopy [J]. Corros. Sci., 1985, 25: 931
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.