Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (10): 742-748    DOI: 10.11901/1005.3093.2019.100
  研究论文 本期目录 | 过刊浏览 |
树枝状介孔氧化硅磨粒的制备和抛光性能
王婉莹1,陈爱莲2,3,马翔宇1,蔡文杰1,陈杨1()
1. 常州大学材料科学与工程学院 常州 213164
2. 常州大学机械工程学院 常州 213164
3. 江苏省绿色过程装备重点实验室 常州 213164
Preparation and Polishing Performance of Dendritic Mesoporous Silica Particle Abrasives
WANG Wanying1,CHEN Ailian2,3,MA Xiangyu1,CAI Wenjie1,CHEN Yang1()
1. School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
2. School of Mechanical Engineering, Changzhou University, Changzhou 213164, China
3. Jiangsu Key Laboratory of Green Process Equipment, Changzhou 213164, China
引用本文:

王婉莹,陈爱莲,马翔宇,蔡文杰,陈杨. 树枝状介孔氧化硅磨粒的制备和抛光性能[J]. 材料研究学报, 2019, 33(10): 742-748.
Wanying WANG, Ailian CHEN, Xiangyu MA, Wenjie CAI, Yang CHEN. Preparation and Polishing Performance of Dendritic Mesoporous Silica Particle Abrasives[J]. Chinese Journal of Materials Research, 2019, 33(10): 742-748.

全文: PDF(4871 KB)   HTML
摘要: 

使用油水双相分层反应体系(以萘烷为上层油相)制备了具有Y型孔道的树枝状介孔氧化硅颗粒(DMSPs)。透射电镜、扫描电镜、X射线衍射、氮气吸附/脱附和粒度分布的测试结果表明:所得DMSPs样品的粒径为72±6 nm,在液相环境中粒度的分布较窄;其内部的三维中心辐射状介孔孔径为6~8 nm,但是孔道结构没有长程有序性。氧化硅片经DMSPs磨粒抛光后表面的粗糙度均方根值由0.76下降至0.21 nm,最大轮廓波峰高度由1.48下降至0.50 nm、最大波谷深度则由1.86下降至0.45 nm,材料去除率高达187 nm/min。讨论了DMSPs磨粒在界面摩擦磨损和接触粘附过程中的作用机制。

关键词 无机非金属材料介孔氧化硅树枝状磨粒抛光    
Abstract

The dendritic mesoporous silica particles (DMSPs) with Y-type mesochannels were synthesized via an oil-water biphase stratification reaction with decahydronaphthalene as the upper oil phase. The spherical DMSPs were then characterized by means of TEM, SEM, Low-angle XRD, nitrigen adsorption/desorption and particle size distribution. Results show that the prepared particles presented an average particle size of 72±6 nm with a narrow size distribution; The DMSPs presented three-dimensional central-radial mesochannels with an average pore inner diameter of 7.7 nm; The formed mesopores presented the lack of long-range order. After polishing with DMSPs abrasives, the root-mean-square roughness of oxidized silicon workpieces reduced from 0.76 to 0.21 nm. The maximum asperity height in sectional profiles decreased from 1.48 to 0.50 nm, and the maximum valley depth reduced from 1.86 to 0.45 nm. An average removal rate of 187 nm/min was achieved. Furthermore, the interfacial friction and wear behavior and contact adhesion effect of DMSPs abrasives were also discussed.

Key wordsinorganic non-metallic materials    mesoporous silica    dendritic    particle abrasive    polishing
收稿日期: 2019-02-12     
ZTFLH:  TB383  
基金资助:国家自然科学基金(51405038);国家自然科学基金(51575058);国家自然科学基金(51875052)
作者简介: 王婉莹,女,1992年生,硕士生
Polosher modelTegraForce-1/TrgraPol-15*Pad modelMD-Chem*
Rotation speed of the head120 r/minDown pressure3.3 psi
Rotation speed of the platen90 r/minSlurry pH value8.5**
Flow rate of slurry100 ml/minPolishging time1 min
Dimension of workpiece2.0 cm×2.0 cm***Solid content1% (mass fraction)
表1  抛光试验参数
图1  DMSPs样品的低倍和高倍TEM照片
图2  DMSPs样品的SEM照片和粒度分布曲线
图3  DMSPs样品的(a)氮气吸附/脱附等温线及(b)孔径分布曲线
图4  DMSPs样品的广角和小角XRD图谱
图5  表面AFM形貌和截面轮廓曲线
图6  表面AFM三维形貌
图7  抛光后表面在722.1 μm×962.8 μm范围内的形貌
[1] Krishnan M, Nalaskowski J W, Cook L M. Chemical mechanical planarization: slurry chemistry, materials, and mechanisms [J]. Chem. Rev., 2010, 110: 178
[2] Mandal S, Thomas E L H, Gines L, Morgan D, et al. Redox agent enhanced chemical mechanical polishing of thin film diamond [J]. Carbon, 2018, 130: 25
[3] Gao S, Huang H, Zhu XL, et al.Surface integrity and removal mechanism of silicon wafers in chemo-mechanical grinding using a newly developed soft abrasive grinding wheel [J]. Mat. Sci. Semicon. Proc., 2017, 63: 97
[4] Liu D F, Chen G L, Hu Q. Material removal model of chemical mechanical polishing for fused silica using soft nanoparticles [J]. Int. J. Adv. Manuf. Tech., 2017, 88: 3515
[5] Chen A L, Chen Y, Zhao X B ,et al. Core/shell structured PS/mSiO2 hybrid particles: Controlled preparation, mechanical property, and their size-dependent CMP performance [J]. J. Alloy Compd., 2018, 779: 511
[6] Chiu H, G??l D, Haddick L, et al. Clickable multifunctional large-pore mesoporous silica nanoparticles as nanocarriers [J]. Chem. Mater., 2018, 30: 644
[7] Chen A L, Qin J W, Chen Y. Synthesis of mesoporous silica microspheres and their application in chemical mechanical polishing [J]. J. Chin. Ceram. Soc., 2016, 44(9): 1357
[7] 陈爱莲, 秦佳伟, 陈 杨. 介孔氧化硅微球的合成及其在化学机械抛光中的应用 [J]. 硅酸盐学报,2016, 44(9): 1357
[8] Ryu J, Kim W, Yun J ,et al. Fabrication of uniform wrinkled silica nanoparticles and their application to abrasives in chemical mechanical planarization [J]. ACS Appl. Mater. Inter., 2018, 10: 11843
[9] Du X, Zhao C X, Huang H W ,et al. Synthesis of dendrimer-like porous silica nanoparticles and their applications in advanced carrier [J]. Prog. Chem., 2016, 28(8): 1131
[9] 杜 鑫, 赵彩霞, 黄洪伟等. 树枝状多孔二氧化硅纳米粒子的制备及其在先进载体中的应用 [J].化学进展,2016, 28(8): 1131
[10] Wang Y B, Liu Z, Shi S H ,et al. Research progress of dendritic fibrous nano-silica (DFNS) [J]. J. Inorg. Mater., 2018, 33(12): 1274
[10] 王亚斌, 刘 忠, 史时辉=等. 树枝状纤维形二氧化硅纳米粒子的研究进展 [J]. 无机材料学报, 2018, 33(12): 1274
[11] Shen D, Yang J, Li X, et al. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres [J]. Nano Lett., 2014, 14: 923
[12] Shen D, Chen L, Yang J ,et al. Ultradispersed palladium nanoparticles in three-dimensional dendritic mesoporous silica nanospheres: Toward active and stable heterogeneous catalysts [J]. ACS Appl. Mater. Inter., 2015, 7: 17450
[13] Chen Y, Lu J X, Chen Z G. Preparation, characterization and oxide CMP performance of composite polystyrene-core ceria-shell abrasives [J]. Microelectron. Eng., 2011, 88: 200
[14] Xue X, Lang W, Yan X ,et al. Dispersed vanadium in three-dimensional dendritic mesoporous silica nanospheres: Active and stable catalysts for the oxidative dehydrogenation of propane in the presence of CO2 [J]. ACS Appl. Mater. Inter., 2017, 9: 15408
[15] Groen J C, Peffer L A A, Pérez-Ramírez J. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis [J]. Micropor. Mesopor. Mat., 2003, 60: 1
[16] Pang X L, Ren J, Tang F Q. Effect of temperature on the morphologies and the mesostructure ordering of mesoporous silica [J]. Chin. J. Inorg. Chem., 2005, 21(2): 281
[16] 庞雪蕾, 任 俊, 唐芳琼. 温度对介孔二氧化硅形貌和介相结构有序性的影响 [J]. 无机化学学报, 2005, 21(2): 281
[17] Wang Y G. Experimental and theoretical study on the material removal in the chemical mechanical polishing at molecular scale [D]. Wuxi: Jiangnan University, 2008
[17] 王永光. 基于分子量级的化学机械抛光材料去除机理的理论和试验研究 [D]. 无锡: 江南大学, 2008
[18] Chen Y, Chen A L, Qin J W ,et al. Preparation of submicrometer mesoporous silica microspheres and fitting calculation for elastic moduli [J]. Chin. J. Nonferr. Metal, 2017, 27(6): 1228
[18] 陈 杨, 陈爱莲, 秦佳伟等. 亚微米介孔二氧化硅微球的制备及其弹性模量的拟合计算 [J]. 中国有色金属学报, 2017, 27(6): 1228
[19] Gon?alves W, Morthomas J, Chantrenne P ,et al. Elasticity and strength of silica aerogels: a molecular dynamics study on large volumes [J]. Acta Mater., 2018, 145: 165
[20] Chen R, Jiang R, Lei H ,et al. Material removal mechanism during porous silica cluster impact on crystal silicon substrate studied by molecular dynamics simulation [J]. Appl. Surf. Sci., 2013, 264: 148
[21] Chen R, Wu Y, Lei H ,et al. Study of material removal processes of the crystal silicon substrate covered by an oxide film under a silica cluster impact: Molecular dynamics simulation [J]. Appl. Surf. Sci., 2014, 305: 609
[22] Mo Y, Turner K T, Szlufarska I. Friction laws at the nanoscale [J]. Nature, 2009, 457: 1116
[23] Wang Y G, Zhu Y, Zhao D ,et al. Nanoscratch of aluminum in dry, water and aqueous H2O2 conditions [J]. Appl. Surf. Sci., 2019, 464: 229
[24] Kawaguchi K, Ito H, Kuwahara T ,et al. Atomistic mechanisms of chemical mechanical polishing of a Cu surface in aqueous H2O2: Tight-binding quantum chemical molecular dynamics simulations [J]. ACS Appl. Mater. Inter., 2016, 8: 11830
[25] Wen J, Ma T, Zhang W ,et al. Atomistic mechanisms of Si chemical mechanical polishing in aqueous H2O2: ReaxFF reactive molecular dynamics simulations [J]. Comp. Mater. Sci., 2017, 131: 230
[26] Qi Y, Chen L, Jiang S ,et al. Investigation of silicon wear against non-porous and micro-porous SiO2 spheres in water and in humid air [J]. RSC Advances, 2016, 6: 89627
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.