Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (7): 513-517    DOI: 10.11901/1005.3093.2017.197
  研究论文 本期目录 | 过刊浏览 |
水热合成粉煤灰基铝掺杂托贝莫来石的微观结构
郭晓潞1,2(), 孟凡杰2
1 同济大学 先进土木工程材料教育部重点实验室 上海 201804
2 同济大学材料科学与工程学院 上海 201804
Microstructure of Hydrothermally Synthesized Fly Ash-based Tobermorite Doped with Aluminum
Xiaolu GUO1,2(), Fanjie MENG2
1 Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, Tongji University, Shanghai 201804, China
2 School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
引用本文:

郭晓潞, 孟凡杰. 水热合成粉煤灰基铝掺杂托贝莫来石的微观结构[J]. 材料研究学报, 2018, 32(7): 513-517.
Xiaolu GUO, Fanjie MENG. Microstructure of Hydrothermally Synthesized Fly Ash-based Tobermorite Doped with Aluminum[J]. Chinese Journal of Materials Research, 2018, 32(7): 513-517.

全文: PDF(2045 KB)   HTML
摘要: 

以纯试剂水热合成的铝掺杂托贝莫来石为参照,对比研究了水热合成粉煤灰基铝掺杂托贝莫来石的微观结构。结果表明:铝掺杂托贝莫来石在(002)晶面的晶面间距为1.156 nm,大于理想托贝莫来石的对应间距,并且相应Ca/(Si+Al)的比值增大而Si的含量降低,说明Al参与了托贝莫来石结构的重建,未参与重建的Al存在于结构层间;相比于纯试剂合成的水热产物,粉煤灰基铝掺杂托贝莫来石Si-O(Q1)弯曲振动的特征峰和Si-O-Si弯曲振动的特征峰发生了蓝移,硅氧四面体链较短,聚合度较差;纯试剂合成的水热产物其微观形貌呈薄箔状形态,而粉煤灰基托贝莫来石的微观形貌为纤维状和片状缠绕而成的球状颗粒。

关键词 无机非金属材料粉煤灰纯试剂水热合成托贝莫来石铝掺杂微观结构    
Abstract

Microstructure and characterization of hydrothermally synthesized fly ash-based tobermorite doped with Al (FA-T) was investigated in comparison with the counterpart of hydrothermal product (T-A) synthesized from pure reagents. The results show that the interplanar spacing of (002) plane of FA-T was larger than that of T-A, correspondingly the ratio of Ca/(Si+Al) increased and the Si-content reduced. Because certain part of the doped Al was involved in the reconstruction of tobermorite structure and the rest part of Al existed in interlamellar spaces of the tobermorite structure . The wave-numbers of two absorption peaks, which belong to the bending vibration of Si-O (Q1) and Si-O-Si for FA-T, were larger than those for T-A. These mean that the chains of [SiO4]4- for FA-T were shorter than those for T-A, and the degree of polymerization of FA-T was poor. The SEM results reveal that the T-A presents as thin foils, whilst the FA-T as spherical particles wound with fibrous and lamellar tobermorite.

Key wordsinorganic non-metallic materials    fly ash    reagents    hydrothermal synthesis    tobermorite    Al-doping    microstructure
收稿日期: 2017-08-15     
ZTFLH:  X773  
基金资助:“十三五”国家重点研发计划重点专项(2016YFC0700802)、国家自然科学基金(51478328)、上海市自然科学基金(17ZR1442000)和中央高校基本科研业务费专项资金(22120180087)
作者简介:

作者简介 郭晓潞,女,1980年生,教授,博士

Chemical compositions SiO2 Al2O3 Fe2O3 CaO Na2O MgO P2O5 SO3 TiO2
Fly ash 40.7 22.4 5.34 9.46 0.45 0.83 0.71 2.17 1.16
表1  粉煤灰的化学组成
Samples SiO2 CaO Al(NO3)39H2O H2O
T-A 8.25 9.30 3.75 212.96
表2  水热合成铝掺杂托贝莫来石单相的配比
Samples FA Ca(OH)2 H2O NaOH
FA-T 1.96 0.84 70 0.56
表3  水热合成粉煤灰基铝掺杂托贝莫来石的配比,/g
图1  铝掺杂托贝莫来石的XRD图谱
Chemical compositions CaO SiO2 Al2O3 Fomula using molar ratio
CamSinAln'
Mass fraction/% Molar
ratio
/m
Mass fraction/% Molar
ratio
/n
Mass fraction/% Molar
ratio
/n'
T-A 43.30 0.773 44.70 0.745 2.64 0.026 Ca5Si4.82Al0.34
FA-T 31.1 0.555 37.1 0.618 15.3 0.3 Ca5Si5.57Al2.70
Ideal tobermorite
(Ca5Si6O16(OH)4H2O)
38.36 0.685 49.32 0.822 - - Ca5Si6
表4  铝掺杂托贝莫来石的化学组成
图2  铝掺杂托贝莫来石的TG-DSC图谱
图3  铝掺杂托贝莫来石的IR图谱
图4  铝掺杂托贝莫来石的SEM照片
[1] Xu Y, Yuan D F, Dong W W.On comprehensive utilization of fly ash[J]. Chin. Well Rock Salt, 2010, 41(1): 29(徐夷, 袁端锋, 董文武. 粉煤灰综合利用浅谈[J]. 中国井矿盐, 2010, 41(1): 29)
[2] Yang L X, Shi Z Y.“Eleventh five” fly ash comprehensive utilization achievements, future technology orientation and development tendency in our country[J]. Coal ash, 2012, (4): 4(杨利香, 施钟毅. “十一五”我国粉煤灰综合利用成效及其未来技术方向和发展趋势[J]. 粉煤灰, 2012, (4): 4)
[3] Bian B X, Xie Q, Zhao Y C.Technology of Reusing Solid Saste of Coal [M]. Beijing: Chemistry Industry press, 2005(边炳鑫, 解强, 赵由才. 煤系固体废弃物资源化技术 [M]. 北京: 化学工业出版社, 2005)
[4] Mao S D, Li Z, Fang Y.Current status of research on the utilization of fly ash[J]. Concrete, 2011, (7): 82(茅沈栋, 李镇, 方莹. 粉煤灰资源化利用的研究现状[J]. 混凝土, 2011, (7): 82)
[5] Han H Q, Jiang T D.Technology of Comprehensive Utilization of Fly Ash [M]. Beijing: Chemistry Industry press, 2001(韩怀强, 蒋挺大. 粉煤灰利用技术 [M]. 北京: 化学工业出版社, 2001)
[6] Nie Y M, Liu S X, Niu F S, et al.Research progress and developing prospect of fly ash[J]. Concrete, 2010, (4): 62(聂轶苗, 刘淑贤, 牛福生等. 粉煤灰研究进展及展望[J]. 混凝土, 2010, (4): 62)
[7] Wang Z F, Feng Y J, Zhang L N.Advances in studies in effects of fine coal ash on agricultural crops[J]. J. Shandong Agric. Univ ., 2003, 34(1): 152(王兆锋, 冯永军, 张蕾娜. 粉煤灰农业利用对作物影响的研究进展[J].山东农业大学学报, 2003, 34(1): 152)
[8] Somiya S.Historical developments of hydrothermal works in Japan, especially in ceramic science[J]. J. Mater. Sci ., 2006, 41(5): 1307
[9] Ferreira C, Ribeiro A, Ottosen L.Possible applications for municipal solid waste fly ash[J]. J. Hazard. Mater ., 2003, 96(2-3): 201
[10] Ma W P, Brown P W.Hydrothermal synthesis of tobermorite from fly ashes[J]. Adv. Cem. Res ., 1997, 9(33): 9
[11] Lv S Q, Ma S H, Guo X Y, et al.Preparation of nanocomposite tobermorite whiskers with fly ash by dynamic hydrothermal method and their characterization[J]. Chin. J. Process Eng ., 2014, 14(3): 487(吕松青, 马淑花, 郭曦尧等. 粉煤灰动态水热合成纳米复合托贝莫来石晶须及其表征[J]. 过程工程学报, 2014, 14(3): 487)
[12] Shan C C, Jing Z Z, Pan L L, et al.Hydrothermal solidification of municipal solid waste incineration fly ash[J]. Res. Chem. Intermed, 2011, 37(2-5): 551
[13] Fan Y, Zhang F S, Zhu J X, et al.Effective utilization of waste ash from MSW and coal co-combustion power plant-zeolite synthesis[J]. J. Hazard. Mater ., 2008, 153(1-2): 382
[14] Li G H, Zhang J Q, Luo J, et al.Preparation of tobermorite whisker from sodium silicate solution[J]. J. Chin. Ceram. Soc ., 2012, 40(12): 1721(李光辉, 张吉清, 罗骏等. 硅酸钠溶液合成托贝莫来石晶须[J]. 硅酸盐学报, 2012, 40(12): 1721)
[15] Jing Z, Jin F, Hashida T, et al.Influence of tobermorite formation on mechanical properties of hydrothermally solidified blast furnace slag[J]. J. Mater. Sci ., 2008, 43(7): 2356
[16] Zhang J Q.Study on the synthesis of calcium silicate-based mineral materials from alkaline sodium silicate solution [D]. Changsha: Central South University, 2012(张吉清. 含硅酸钠溶液合成硅酸钙基矿物材料的研究 [D]. 长沙:中南大学, 2012)
[17] Yang N R, Yue W H.The Handbook of Inorganic Matalloid Materials Atlas [M]. Wuhan: Wuhan University of Technology press, 2000(杨南如, 岳文海. 无机非金属材料图谱手册 [M]. 武汉: 武汉工业大学出版社, 2000)
[18] Lodeiro I G, Macphee D E, Palomo A, et al.Effect of alkalis on fresh C-S-H gels: FTIR analysis[J]. Cem. Concr. Res ., 2009, 39(3): 147
[19] Lodeiro I G, Jimenez A F, Blanco M T, et al.FTIR study of the sol-gel synthesis of cementitious gels C-S-H and N-A-S-H[J]. J. Sol-Gel Sci. Technol ., 2008, 45(1): 63
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[6] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[9] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[10] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[11] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[12] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[13] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[14] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[15] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.