Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (5): 327-332    DOI: 10.11901/1005.3093.2017.431
  研究论文 本期目录 | 过刊浏览 |
温度响应性中空纳米纤维膜的制备和表征
周一凡, 郑勰, 周剑锋, 查刘生()
1 东华大学纤维材料改性国家重点实验室 上海 201620
2 东华大学分析测试中心 上海 201620
3 东华大学材料科学与工程学院 上海 201620
Preparation and Characterization of Temperature-responsive Hollow Nanofibrous Membrane
Yifan ZHOU, Xie ZHENG, Jianfeng ZHOU, Liusheng ZHA
1 State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
2 Analysis and Measurement Center, Donghua University, Shanghai 201620, China
3 College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
引用本文:

周一凡, 郑勰, 周剑锋, 查刘生. 温度响应性中空纳米纤维膜的制备和表征[J]. 材料研究学报, 2018, 32(5): 327-332.
Yifan ZHOU, Xie ZHENG, Jianfeng ZHOU, Liusheng ZHA. Preparation and Characterization of Temperature-responsive Hollow Nanofibrous Membrane[J]. Chinese Journal of Materials Research, 2018, 32(5): 327-332.

全文: PDF(2661 KB)   HTML
摘要: 

先用自由基溶液聚合法合成数均分子量为2.24×104 g/mol、最低临界溶解温度为35.8℃的温度响应性三元共聚物聚(N-异丙基丙烯酰胺-co-N-羟甲基丙烯酰胺-co-丙烯酸十八烷基酯,PNNS),用核磁共振波谱仪确证其化学结构,并测得三种共聚单元的摩尔比为100∶27∶5;然后以PNNS溶解在乙醇和水中形成的溶液为壳纺丝液,以矿物油为芯纺丝液,用同轴静电纺丝技术并结合热处理以及用甲苯萃取矿物油等工艺制备出在水介质中具有良好稳定性的中空纳米纤维膜。用SEM和TEM等技术手段证实了构成膜的纳米纤维具有中空结构,随着芯纺丝液流速的增大中空纳米纤维的壳层厚度逐渐减小。这种中空纳米纤维膜在水介质中具有明显的温度响应性,当水介质温度从25℃升到50℃时其面积收缩率超过50%。同时,当水介质温度在25~50℃交替变化时中空纳米纤维膜达到溶胀或消溶胀平衡的时间小于15 s。

关键词 有机高分子材料中空纳米纤维膜同轴静电纺丝温度响应性    
Abstract

The temperature-responsive tri-copolymer (PNNS) i.e. poly(N-isopropylacrylamide-co-N-hydroxymethylacrylamide-co-octadecyl acrylate) with number-average molecular weight of 2.24×104 g/mol and lower critical solution temperature of 35.8℃ was firstly synthesized via solution free radical polymerization, and then the chemical structure of which was confirmed by nuclear magnetic resonance spectrometer, and thereby the measured molar ratio of its three substances is 100∶27∶5. The hollow nanofibrous membrane with high stability in aqueous medium were prepared by coaxial electrospinning technique using the ethanol and water solution of PNNS as shell spinning solution and mineral oil as core spinning solution, followed by the processes of heat treatment and extracting the oil by toluene. Results show the membrane component of nanofibers presents hollow structure, of which the shell thickness gradually decreases with the increase of the flow rate of the core spinning fluid; The membrane in aqueous medium shows remarkable temperature-responsiveness; When the aqueous medium temperature is raised from 25℃ to 50℃, the percentage of area shrinkage of the membrane reaches above 50%; When the aqueous medium temperature changes alternately between 25℃ and 50℃, the hollow nanofibrous membrane may experience swelling and deswelling alternatively, but it could reach an equilibrium within 10s for the two cases.

Key wordsorganic polymer materials    hollow nanofibrous membrane    coaxial electrospinning    temperature-responsiveness
收稿日期: 2017-07-18     
基金资助:资助项目 国家自然科学基金(51373030, 51503033)
作者简介:

作者简介 周一凡,女,1992年生,硕士生

图1  PNNS的1H NMR谱图及其谱峰归属和PNNS水溶液在500nm处的吸光度与温度之间的关系
图2  中空纳米纤维膜的FE-SEM图、中空纳米纤维断面的FE-SEM图和不同芯纺丝液流速制得的芯壳复合纳米纤维的TEM图(从左到右,芯纺丝液的流速分别为0.1,0.2,0.3 mL/h)
图3  芯纺丝液流速分别为0.1,0.2,0.3 mL/h的中空纳米纤维膜振荡前后的外观照片及其质量损失百分比
图4  不同芯纺丝液流速下中空纳米纤维膜浸泡不同温度水中的外观照片、其面积随温度变化的关系曲线图及其交替浸泡在25℃和50℃水中测得的面积随时间变化的关系
[1] Wu J, Wang N, Zhao Y, et al.Electrospinning of multilevel structured functional micro-/nanofibers and their applications[J]. J. Mater. Chem., 2013, 1A: 7290
[2] Huang C B, Soenen S J, Rejman J, et al.Stimuli-responsive electrospun fibers and their applications[J]. Chem. Soc. Rev., 2011, 40: 2417
[3] Konosu Y, Matsumoto H, Tsuboi K, et al.Enhancing the effect of the nanofiber network structure on thermoresponsive wettability switching[J]. Langmuir, 2011, 27: 14716
[4] Chen L N, Chiu Y C, Hung J J, et al.Multifunctional electrospun nanofibers prepared from poly((N- isopropylacrylamide) -co- (N-hydroxymethylacrylamide)) and their blends with 1,2-Diaminoanthraquinone for no gas detection[J]. Macromol. Chem. Phys., 2014, 215: 286
[5] Kenry, Lim C T. Nanofiber technology: current status and emerging developments[J]. Prog. Polym. Sci., 2017, 70: 1
[6] Stuart M A C, Huck W T S, Genzer J, et al. Emerging applications of stimuli-responsive polymer materials[J]. Nat. Mater., 2010, 9: 101
[7] Jahan K I, Goponenko A, Dzenis Y.Electrospun nanofibrous materials as stimuli-responsive polymerized hydrogels[J]. Macromol. Symp., 2016, 365: 118
[8] Zhang C L, Cao F H, Wang J L, et al.Highly stimuli-responsive Au nanorods/poly(N-isopropylacrylamide) (PNIPAM) composite hydrogel for smart switch[J]. ACS Appl. Mater. Interfaces., 2017, 9: 24857
[9] Wang L Y, Chen S Y, Zhou J F, et al.Silver nanoparticles loaded thermoresponsive hybrid nanofibrous hydrogel as a recyclable dip-catalyst with temperature-tunable catalytic activity[J]. Mater. Eng., 2017, 302: 1700181
[10] Qu H L, Wei S Y, Guo Z H.Coaxial electrospun nanostructures and their applications[J]. J. Mater. Chem., 2013, 1A: 11513
[11] Chen Z, Chen Z F, Zhang A L, et al.Electrospun nanofibers for cancer diagnosis and therapy[J]. Biomater. Sci., 2016, 4: 922
[12] Gil E S, Hudson S M.Stimuli-reponsive polymers and their bioconjugates[J]. Prog. Polym. Sci., 2004, 29: 1173
[13] Zhang Q S, Zha L D, Ma J H, et al.A novel route to prepare pH- and temperature-sensitive nanogels via a semibatch process[J]. J. Colloid Interface Sci., 2009, 330: 330
[14] Zha L S, Wang X Q, Zou X B, et al.Progresses in investigation of Preparation, stimulus responsive properties and application of intelligent Nano-hydrogels[J]. Petrochem. Technol., 2012, 41: 131(查刘生, 王秀琴, 邹先波等. 智能纳米水凝胶的制备及其刺激响应性能和应用研究进展[J]. 石油化工, 2012, 41: 131)
[15] Zhang Q S, Zha L S, Ma J H, et al.Synthesis and characterization of novel, temperature-sensitive microgels based on N-isopropylacrylamide and tert-butyl acrylate[J]. J. Appl. Polym. Sci., 2007, 103: 2962
[16] Okuzaki H, Kobayashi K, Yan H.Thermo-responsive nanofiber mats[J]. Macromolecules, 2009, 42: 5916
[17] Wu C, Zhou S Q, Au-Yeung S C F, et al. Volume phase transition of spherical microgel particles[J]. Die Angew. Makromol. Chem., 1996, 240: 123
[18] Suzuki A, Tanaka T.Phase transition in polymer gels induced by visible light[J]. Nature, 1990, 346: 345
[19] González E, Frey M W.Synthesis, characterization and electrospinning of poly(vinyl caprolactam-co-hydroxymethyl acrylamide) to create stimuli-responsive nanofibers[J]. Polymer, 2017, 108: 154
[1] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[2] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[3] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[4] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[5] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[6] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[7] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[8] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[9] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[10] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[11] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[12] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[13] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[14] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[15] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.