Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (4): 271-277    DOI: 10.11901/1005.3093.2017.295
  研究论文 本期目录 | 过刊浏览 |
PIM-CO19基热致刚性膜材料的制备和气体分离性能
鲁云华1(), 郝继璨1, 李琳2, 宋晶2, 肖国勇1, 王同华2()
1 辽宁科技大学化学工程学院 鞍山 114051
2 大连理工大学化工学院 精细化工国家重点实验室 大连 116024
Preparation and Gas Separation Properties of PIM-CO19 Based Thermally Induced Rigid Membranes
Yunhua LU1(), Jican HAO1, Lin LI2, Jing SONG2, Guoyong XIAO1, Tonghua WANG2()
1 School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
2 State Key Lab of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
引用本文:

鲁云华, 郝继璨, 李琳, 宋晶, 肖国勇, 王同华. PIM-CO19基热致刚性膜材料的制备和气体分离性能[J]. 材料研究学报, 2018, 32(4): 271-277.
Yunhua LU, Jican HAO, Lin LI, Jing SONG, Guoyong XIAO, Tonghua WANG. Preparation and Gas Separation Properties of PIM-CO19 Based Thermally Induced Rigid Membranes[J]. Chinese Journal of Materials Research, 2018, 32(4): 271-277.

全文: PDF(1380 KB)   HTML
摘要: 

以邻苯二酚和2-丁酮为原料合成四羟基化合物3,3’-二乙基-5,5’,6,6’-四羟基-3,3’,2-三甲基-1,1’-螺旋双茚满,然后与四氟对苯二腈发生聚合反应制备出自具微孔聚合物PIM-CO19。将PIM-CO19分别在300℃、350℃和400℃进行热处理,得到热致刚性膜材料。使用红外光谱仪(FTIR)、质谱(MS)、X-射线光电子能谱(XPS)、热重分析仪(TGA)、差示扫描量热仪(DSC)、X-射线衍射仪(XRD)以及气体渗透性能测试仪表征了PIM-CO19和热致刚性膜材料的结构和性能。结果表明:在氮气氛围下PIM-CO19中的-CN间发生了热诱导的交联反应。调控热处理温度可提高PIM-CO19基热致刚性膜材料的气体渗透性能,使PIM-CO19-350对H2、O2、N2、CO2和CH4的渗透通量分别达到了1758 Barrer、586 Barrer、180 Barrer、4075 Barrer和277 Barrer。当热处理温度提高到400℃时膜材料的气体渗透性逐渐降低,但其选择性明显提高,O2/N2和CO2/CH4的气体分离系数分别达到4.76和38.78。

关键词 有机高分子材料自具微孔聚合物气体分离热致刚性膜渗透性选择性    
Abstract

3,3’-diethyl-5,5’,6,6’-tetrahydroxy-3,3’,2-trimethyl-1,1’-spirobisindane was synthesized from pyrocatechol and 2-butanone, then the yellow polymers of intrinsic microporosity (PIM-CO19) were prepared from the 3,3’-diethyl-5,5’,6,6’-tetrahydroxy-3,3’,2-trimethyl-1,1’-spirobisindane and 2,3,5,6-tetrafluorotere phthalonitrile. The structures and properties of the PIM-CO19 polymer were characterized by Fourier transform infrared (FTIR), mass spectrometry (MS), X-ray photoelectron spectrometer (XPS), differential scanning calorimeter (DSC), thermogravimetric analysis (TGA) and gas permeability test. The PIM-CO19 polymer membranes were thermally treated at 300℃, 350℃ and 400℃ in N2 atmosphere, respectively. The structures and properties of the PIM-CO19 based thermally induced rigid membranes were characterized by FTIR, X-ray diffraction (XRD) and the gas permeability testing. The results show that the crosslinking reaction of PIM-CO19 was thermally induced, and the gas permeabilities of the PIM-CO19 based thermally induced rigid membranes were further improved by controlling the processing temperature. Especially for the PIM-CO19-350, the permeabilities of H2, O2, N2, CO2 and CH4 are 1758 Barrer, 586 Barrer, 180 Barrer, 4075 Barrer and 277 Barrer separately. When the treatment temperature reached 400℃, the permeabilities of the gas separation membranes were decreased, but the selectivity was improved. The selectivity of O2/N2 and CO2/CH4 were 4.76 and 38.78, respectively.

Key wordsorganic polymer materials    polymers of intrinsic microporosity    gas separation    thermally induced rigid membrane    permeability    selectivity
收稿日期: 2017-05-03     
基金资助:资助项目 国家自然科学基金(21406102, 21436009, 21506020, 21676044),辽宁省教育厅优秀人才项目(LJQ2015053)
作者简介:

作者简介 鲁云华,1977年生,博士

图1  自具微孔聚合物PIM-CO19的合成
图2  3,3’-二乙基-5,5’,6,6’-四羟基-3,3’,2-三甲基-1,1’-螺旋双茚满的质谱图
图3  3,3’-二乙基-5,5’,6,6’-四羟基-3,3’,2-三甲基-1,1’-螺旋双茚满的红外光谱图
图4  PIM-CO19及其热致刚性膜材料的红外光谱
图5  PIM-CO19形成的热交联结构
图6  PIM-CO19及其热致刚性膜材料的XPS谱图
图7  PIM-CO19聚合物的DSC曲线
图8  PIM-CO19聚合物的热重分析曲线
图9  PIM-CO19及其热致刚性膜材料的XRD曲线
Sample Permeabilities/Barrera Ideal selectivity
H2 O2 N2 CO2 CH4 O2/N2 CO2/CH4
PIM-CO19 1562 483 140 3044 195 3.45 15.61
PIM-CO19-300 1606 508 159 3569 225 3.19 15.85
PIM-CO19-350 1758 586 180 4075 277 3.26 14.70
PIM-CO19-400 1437 369 78 2150 55 4.76 38.78
表1  PIM-CO19及其热致刚性膜材料的气体分离性能
图10  PIM-CO19及其热致刚性膜材料的气体渗透性与选择性间的平衡关系
[1] Chen X, Wang Y, Jiang L.Research progress of preparation methods of CO2-favored permeation membranes[J]. Chem. J. Chin. Univ., 2013, 34: 249(陈曦, 王耀, 江雷. CO2选择性透过膜材料的制备[J]. 高等学校化学学报, 2013, 34: 249)
[2] Yu B, Liu X M, Cong H L, et al.Research progress of modification and application of polymer membrane for gas separation[J]. New Chem. Mater., 2015, 43(5): 230(于冰, 刘小冕, 丛海林等. 聚合物气体分离膜改性及应用进展[J]. 化工新型材料, 2015, 43(5): 230)
[3] Ren H T, Wang Z G, Zhang F, et al.Progress of microporous polyimide membranes for gas separation[J]. J. Funct. Polym., 2016, 29: 377(任会婷, 王正宫, 张丰等. 微孔PI气体分离膜的研究进展[J]. 功能高分子学报, 2016, 29: 377)
[4] Wu X M, Zhang Q G, Zhu A M, et al.Advances in structure controls and modifications of PIMs membranes for gas separation[J]. Prog. Chem., 2014, 26: 1214(吴新妹, 张秋根, 朱爱梅等. 自具微孔高分子气体分离膜的结构调控与改性研究[J]. 化学进展, 2014, 26: 1214)
[5] Xu S J, Liang L Y, Li B Y, et al.Research progress on microporous organic polymers[J]. Prog. Chem., 2011, 23: 2085(徐叔军, 梁丽芸, 李步怡等. 有机微孔聚合物研究进展[J]. 化学进展, 2011, 23: 2085)
[6] McKeown N B, Budd P M. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage[J]. Chem. Soc. Rev., 2006, 35: 675
[7] Budd P M, McKeown N B, Fritsch D. Polymers of intrinsic microporosity (PIMs): high free volume polymers for membrane applications [J]. Macromol. Symp., 2006, 245-246: 403
[8] Fritsch D, Bengtson G, Carta M, et al.Synthesis and gas permeation properties of spirobischromane-based polymers of intrinsic microporosity[J]. Macromol. Chem. Phys., 2011, 212: 1137
[9] Chen Y R, Chen L H, Chang K S, et al.Structural characteristics and transport behavior of triptycene-based PIMs membranes: a combination study using ab initio calculation and molecular simulations[J]. J. Memb. Sci., 2016, 514: 114
[10] Tocci E, De Lorenzo L, Jansen J C, et al.Intrinsic microporosity polymers (tb-pims) membrane of new generation: molecular modelling and permeation properties[J]. Proc. Eng., 2012, 44: 113
[11] Khan M M, Bengtson G, Neumann S, et al.Synthesis, characterization and gas permeation properties of anthracene maleimide-based polymers of intrinsic microporosity[J]. RSC Adv., 2014, 4: 32148
[12] Robeson L M.Correlation of separation factor versus permeability for polymeric membranes[J]. J. Memb. Sci., 1991, 62: 165
[13] Robeson L M.The upper bound revisited[J]. J. Memb. Sci., 2008, 320: 390
[14] Freeman B D.Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes[J]. Macromolecules, 1999, 32: 375
[15] Du N Y, Dal-Cin M M, Robertson G P, et al. Decarboxylation-induced cross-linking of polymers of intrinsic microporosity (PIMs) for membrane gas separation[J]. Macromolecules, 2012, 45: 5134
[16] Li F Y, Chung T S.Physical aging, high temperature and water vapor permeation studies of UV-rearranged PIM-1 membranes for advanced hydrogen purification and production[J]. Int. J. Hydrogen Energy, 2013, 38: 9786
[17] Li F Y, Xiao Y C, Chung T S, et al.High-performance thermally self-cross-linked polymer of intrinsic microporosity (PIM-1) membranes for energy development[J]. Macromolecules, 2012, 45: 1427
[18] Lu Y H, Hao J C, Li L, et al.Synthesis of thermally induced rigid membranes and their gas separation properties[J]. Acta Polym. Sin., 2016, (8): 1145(鲁云华, 郝继璨, 李琳等. 热致刚性膜材料的合成与气体分离性能研究[J]. 高分子学报, 2016, (8): 1145)
[19] Xiao Y C, Shao L, Chung T S, et al.Effects of thermal treatments and dendrimers chemical structures on the properties of highly surface cross-linked polyimide films[J]. Ind. Eng. Chem. Res., 2005, 44: 3059
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[5] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[6] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[7] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[8] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[9] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[10] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[11] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[12] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[13] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[14] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[15] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.