Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (2): 112-118    DOI: 10.11901/1005.3093.2017.233
  研究论文 本期目录 | 过刊浏览 |
添加Sc对7055铝合金微观结构和力学性能的影响
滕广标1, 刘崇宇1(), 李剑2, 马宗义3(), 周文标2, 向晶2
1 桂林理工大学 广西有色金属及特色材料加工教育部重点实验室 桂林 541004
2 广西南南铝加工有限公司 南宁 530031
3 中国科学院金属研究所 沈阳材料科学国家(联合)实验室 沈阳 110016
Effect of Sc on Microstructure and Mechanical Property of 7055 Al-alloy
Guangbiao TENG1, Chongyu LIU1(), Jian LI2, Zongyi MA3(), Wenbiao ZHOU2, Jing XIANG2
1 Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China;
2 Alnan Aluminium Co., Ltd., Nanning 530031, China
3 Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

滕广标, 刘崇宇, 李剑, 马宗义, 周文标, 向晶. 添加Sc对7055铝合金微观结构和力学性能的影响[J]. 材料研究学报, 2018, 32(2): 112-118.
Guangbiao TENG, Chongyu LIU, Jian LI, Zongyi MA, Wenbiao ZHOU, Jing XIANG. Effect of Sc on Microstructure and Mechanical Property of 7055 Al-alloy[J]. Chinese Journal of Materials Research, 2018, 32(2): 112-118.

全文: PDF(1871 KB)   HTML
摘要: 

研究了添加Sc元素对7055铝合金铸造、均匀化处理、轧制和固溶时效过程的微观结构演化以及力学性能的影响。结果表明,向7055溶液中添加质量分数为0.25%的Sc导致在铸造过程中形成初生Al3(Sc,Zr)相。这个相能促使合金发生非均质形核,显著细化合金的铸造组织。在7055-Sc铝合金的均匀化处理过程中析出高密度纳米Al3(Sc, Zr)相,不但能抑制晶粒粗化,而且在后期轧制变形和固溶时效处理过程中还起钉扎晶界、抑制回复与再结晶、保留纤维组织的作用。与7055铝合金相比,7055-Sc铝合金的晶粒尺寸更小,因此具有更有效的细晶强化效应。添加Sc的时效处理态7055铝合金的最大抗拉强度和显微硬度,分别提高到642 MPa和218 HV。

关键词 金属材料轧制变形热处理力学性能微观组织铝合金    
Abstract

The effect of Sc addition on the microstructure and mechanical properties of 7055 Al-alloy as-cast, as well as after homogenization-, rolling-, solution- and aging-treatment was investigated. The addition of 0.25%(mass fraction) Sc could lead to the formation of Al3(Sc, Zr) phase, which can promote the heterogeneous nucleation during casting. Therefore, the microstructure of the as cast 7055 Al-alloy was refined. The precipitation of nano-sized Al3(Sc, Zr) phase occurred during the homogenization treatment of the 7055-Sc Al-alloy, and this nano-sized Al3( Sc, Zr) phase could effectively inhibit the coarsening of Al grains during homogenization treatment, and play a role in pinning the grain boundaries, therewith inhibiting the recovery and recrystallization, thus retaining the fiber-like structure during subsequent rolling and solution treatments. Compared to the plain 7055 Al-alloy, the 7055-Sc Al alloy exhibited much higher fine grain strengthening effect due to finer grain size and showed higher tensile strength and hardness as high as 642 MPa and 218 HV, respectively.

Key wordsmetallic materials    rolling    heat treatments    mechanical properties    microstructure    Al alloys
收稿日期: 2017-04-05     
ZTFLH:  TG146.2  
基金资助:国家自然科学基金(51601045),广西重点研发计划(桂科AB16380021),广西八桂学者创新团队项目
作者简介:

作者简介 滕广标,男,1994年生,硕士生

图1  铸态AA 7055和7055-Sc合金的OM照片
图2  铸态7055-Sc合金的SEM和能谱元素分布照片
图3  均匀化处理后7055和7055-Sc合金的OM照片
图4  均匀化处理后7055-Sc合金的SEM及能谱元素分布
图5  均匀化处理后7055和7055-Sc合金的TEM照片(箭头为Al3(Sc, Zr)相的(110)及(001))
图6  轧制态7055和7055-Sc合金的OM照片
图7  固溶时效态7055和7055-Sc合金的OM照片
图8  固溶时效态7055合金和7055-Sc合金的低倍和高倍TEM照片
Alloy σb/MPa σ0.2/MPa σ/% Microhardness(HV)
7055 624 552 11 209
7055-Sc 642 556 8 218
表1  固溶时效后7055和7055-Sc合金的力学性能
[1] Zhang X M, Deng Y L, Zhang Y.Development of high strength aluminum alloys and processing techniques for the materials[J]. Acta Metall. Sin., 2015, 51: 257(张新明, 邓运来, 张勇. 高强铝合金的发展及其材料的制备加工技术[J]. 金属学报, 2015, 51: 257)
[2] Li G F, Zhang X M, Zhu H F.Effect of minor Er and Y additions to Al-Zn-Mg-Cu-Zr alloy on homogenizing behavior[J]. J. Aeronaut. Mater., 2010, 30(6): 1(李国锋, 张新明, 朱航飞. 微量Er, Y对Al-Zn-Mg-Cu-Zr合金均匀化的影响[J]. 航空材料学报, 2010, 30(6): 1)
[3] Li P, Liu D X, Guan Y Y, et al.Effects of shot peening on fatigue property of new aluminum alloy 7055-T7751[J]. Mater. Mech. Eng., 2015, 39(1): 86(李鹏, 刘道新, 关艳英等. 喷丸强化对新型7055-T7751铝合金疲劳性能的影响[J]. 机械工程材料, 2015, 39(1): 86)
[4] Li C M, Chen Z Q, Cheng N P, et al.Mechanical properties of 7055 ultrahigh-strength and ultrahigh-ductility aluminum alloy[J]. Heat Treat. Met., 2008, 33(1): 100(李春梅, 陈志谦, 程南璞等. 7055超高强、超高韧铝合金力学性能分析[J]. 金属热处理, 2008, 33(1): 100)
[5] Yan L M, Wang Z Q, Shen J, et al.Research status and expectation of 7055 aluminium alloy[J]. Mater. Rev., 2005, 23(5): 69(闫亮明, 王志强, 沈健等. 7055铝合金的研究现状及展望[J]. 材料导报, 2005, 23(5): 69)
[6] Jia Z H, R?yset J, Solberg J K, et al.Formation of precipitates and recrystallization resistance in Al-Sc-Zr alloys[J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 1866
[7] Jiang X J, Li Y Y, Gui Q H, et al. Effect of Sc on microstructure and properties of Al-Li-Cu-Mg-Zr alloy[J]. Acta Metall. Sin., 1994, 30: A 355(蒋晓军, 李依依, 桂全红等. Sc对Al-Li-Cu-Mg-Zr合金组织与性能的影响[J]. 金属学报, 1994, 30: A 355)
[8] Xiao D H, Huang B Y, Chen K H.Microstructure and corrosion properties of Al-Cu-Mg-Ag-(Sc) alloys[J]. J. Central South Univ.(Sci. Technol.), 2009, 40: 1252(肖代红, 黄伯云, 陈康华. Al-Cu-Mg-Ag-(Sc)合金的显微组织与腐蚀性能[J]. 中南大学学报(自然科学版), 2009, 40: 1252)
[9] Gang J W, Han X L, Li Z H, et al.Solution and aging treatment of Al-6.6Zn-2.3Mg-2.1Cu-0.12Zr aluminum alloy[J]. Chin. J. Rare Met., 2012, 36: 523(刚建伟, 韩小磊, 李志辉等. 固溶时效处理对Al-6.6Zn-2.3Mg-2.1Cu-0.12Zr合金组织性能的影响[J]. 稀有金属, 2012, 36: 523)
[10] Dai X Y, Xia C Q, Long C G, et al.Morphology of primary Al3(Sc, Zr) of As-cast Al-Zn-Mg-Cu-Zr-Sc alloys[J]. Rare Met. Mater. Eng., 2011, 40: 265(戴晓元, 夏长清, 龙春光等. Al-Zn-Mg-Cu-Zr-Sc合金铸态Al3(Sc, Zr)相形貌的研究[J]. 稀有金属材料与工程, 2011, 40: 265)
[11] Dai X Y, Li N, Xiong L, et al.Quenching sensitivity of Al-Zn-Mg-Cu-Zr-0.2Sc alloy[J]. Trans. Mater. Heat Treatment, 2014, 35(12): 62(戴晓元, 李妮, 熊亮等. Al-Zn-Mg-Cu-Zr-0.2Sc合金的淬火敏感性[J]. 材料热处理学报, 2014, 35(12): 62)
[12] Tu Q, Yang F B, Xu J, et al.Study on heat treatment process of cast Al-Zn-Mg-Cu-Zr-Sc alloy[J]. Hot Work. Technol., 2011, 40(12): 155(涂强, 杨福宝, 徐骏等. 挤压铸造超高强Al-Zn-Mg-Cu-Zr-Sc合金的热处理工艺研究[J]. 热加工工艺, 2011, 40(12): 155)
[13] Li W B, Pan Q L, Zou L, et al.Intergranular and exfoliation corrosion behaviour of high strength Al-Zn-Cu-Mg-Zr alloy containing Sc[J]. J. Aeronaut. Mater., 2008, 28(1): 53(李文斌, 潘清林, 邹亮等. 含Sc的超高强Al-Zn-Cu-Mg-Zr合金的晶间腐蚀和剥落腐蚀行为[J]. 航空材料学报, 2008, 28(1): 53)
[14] Wang Z G, Xu J, Zhang Z F, et al.Effect of Sc and Zr compound addition on microstructures and properties of the squeeze cast Al-Zn-Mg-Cu alloy[J]. Spec. Cast. Nonferrous Alloys, 2013, 33: 797(王志刚, 徐骏, 张志峰等. Sc、Zr对Al-Zn-Mg-Cu合金挤压铸造组织性能的影响[J]. 特种铸造及有色合金, 2013, 33: 797)
[15] Li W B, Pan Q L, Xiao Y P, et al.Effect of aging processes on microstructure and properties of Al-Zn-Cu-Mg-Sc-Zr alloy[J]. Trans. Mater. Heat Treatment, 2011, 32(8): 47(李文斌, 潘清林, 肖艳苹等. 时效工艺对Al-Zn-Cu-Mg-Sc-Zr合金组织与性能的影响[J]. 材料热处理学报, 2011, 32(8): 47)
[16] Dai X Y, Xia C Q, Long C G, et al.As-cast microstructures and properties of Al-9.0Zn-2.5Mg-1.2Cu-0.15Zr alloys adding Sc[J]. Foundry, 2007, 56: 991(戴晓元, 夏长清, 龙春光等. 含钪Al-9.0Zn-2.5Mg-1.2Cu-0.15Zr合金铸态组织与力学性能[J]. 铸造, 2007, 56: 991)
[17] Liu H, Luo B H, Bo Z H.Effects of Sc and Zr addition on microstructures and properties of Al-Zn-Mg-Cu alloys[J]. Light Alloy Fabr. Technol., 2006, 34(2): 43(刘黄, 罗兵辉, 柏振海. Sc、Zr对Al-Zn-Mg-Cu合金组织与性能的影响[J]. 轻合金加工技术, 2006, 34(2): 43)
[18] Dai X Y, Xia C Q, Sun Z Q, et al.Effect of strengthening solution treatment on microstructure and mechanical properties of Al-7.6Zn-2.1Mg-1.30Cu-0.15Zr-0.30Sc alloys[J]. Rare Met. Mater. Eng., 2007, 36(S3): 195(戴晓元, 夏长清, 孙振起等. 强化固溶对Al-7.6Zn-2.1Mg-1.30Cu-0.15Zr-0.30Sc合金组织与性能的影响[J]. 稀有金属材料与工程, 2007, 36(S3): 195)
[19] Song M, He Y H, Fang S F.Effects of Zr content on the yield strength of an Al-Sc alloy[J]. J. Mater. Eng. Per., 2011, 20: 377
[20] Liu Z X, Li Z J, Wang M X, et al. Effect of complex alloying of Sc, Zr and Ti on the microstructure and mechanical properties of Al-5Mg alloys[J]. Mater. Sci. Eng., 2008, 483-484A: 120
[21] Riddle Y W, Sanders T H Jr. A study of coarsening, recrystallization, and morphology of microstructure in Al-Sc-(Zr)-(Mg) alloys[J]. Metall. Mater. Trans., 2004, 35A: 341
[22] Van Dalen M E, Seidman D N, Dunand D C. Creep and coarsening properties of Al-0.06 at.% Sc-0.06 at.% Ti at 300-450℃[J]. Acta Mater., 2008, 56: 4369
[23] R?yset J, Ryum N.Scandium in aluminium alloys[J]. Int. Mater. Rev., 2005, 50: 19
[24] Kharakterova M L, Eskin D G, Toropova L S.Precipitation hardening in ternary alloys of the Al-Sc-Cu and Al-Sc-Si systems[J]. Acta Metall. Mater., 1994, 42: 2285
[25] Milman Y V, Sirko A I, Lotsko D V, et al. Microstructure and mechanical properties of cast and wrought Al-Zn-Mg-Cu alloys modified with Zr and Sc[J]. Mater. Sci. Forum, 2002, 396-402: 1217
[26] Lv X Y, Guo E J, Rometsch P, et al.Effect of one-step and two-step homogenization treatments on distribution of Al3Zr dispersoids in commercial AA 7150 aluminium alloy[J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 2645
[27] Zhang X F, Zhou T G.Recrystallization of Al-Mg-Sc alloy produced by continuous casting-extrusion technology[J]. Light Alloy Fabr. Technol., 2010, 38(9): 49(张雪飞, 周天国. 连续铸挤成形Al-Mg-Sc合金的再结晶[J]. 轻合金加工技术, 2010, 38(9): 49)
[28] Fu L, Yin Z M, Huang J W, et al.Effect of Sc content on microstructure and properties of Al-Mg-Sc alloy[J]. Light Alloy Fabr. Technol., 2012, 40(9): 64(傅乐, 尹志民, 黄继武等. Sc含量对Al-Mg-Mn合金板材组织与性能的影响[J]. 轻合金加工技术, 2012, 40(9): 64)
[29] Zhang X F, Li J P, Wen J L.Effect of aging treatment on property of Al-1.5Mg-0.3Sc alloy wire formed by SCR technology[J]. Chin. J. Mater. Res., 2006, 20: 281(张雪飞, 李俊鹏, 温景林. 热处理对SCR成形Al-1.5Mg-0.3Sc合金线材性能的影响[J]. 材料研究学报, 2006, 20: 281)
[30] Chen X M, Pan Q L, Luo C P, et al.Effect of micro-alloying with Sc and Ti on the microstructure and mechanical property of Al-Mg based alloys[J]. Chin. J. Mater. Res., 2005, 19: 419(陈显明, 潘青林, 罗承萍等. 复合微合金化对Al-Mg合金组织与性能的影响[J]. 材料研究学报, 2005, 19: 419)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[3] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[4] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[5] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[6] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[7] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.