Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (2): 119-126    DOI: 10.11901/1005.3093.2017.318
  研究论文 本期目录 | 过刊浏览 |
具有宽频与可控微波吸收性能的石墨烯空心微球的自组装
曾强1, 陈平1(), 于祺2, 徐东卫1
1 大连理工大学化工学院 三束材料改性教育部重点实验室 大连 116024
2 沈阳航空航天大学 辽宁省先进聚合物基复合材料重点实验室 沈阳 110136
Self-assembly of Graphene Hollow Microspheres with Wideband and Controllable Microwave Absorption Properties
Qiang ZENG1, Ping CHEN1(), Qi YU2, Dongwei XU1
1 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education & School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
2 Liaoning Key Laboratory of Advanced Polymer Matrix Composites, Shenyang Aerospace University, Shenyang 110136, China
引用本文:

曾强, 陈平, 于祺, 徐东卫. 具有宽频与可控微波吸收性能的石墨烯空心微球的自组装[J]. 材料研究学报, 2018, 32(2): 119-126.
Qiang ZENG, Ping CHEN, Qi YU, Dongwei XU. Self-assembly of Graphene Hollow Microspheres with Wideband and Controllable Microwave Absorption Properties[J]. Chinese Journal of Materials Research, 2018, 32(2): 119-126.

全文: PDF(2738 KB)   HTML
摘要: 

用简单高效的两步法制备了一种包覆有四氧化三铁的还原石墨烯空心微球(Air@rGO€Fe3O4)。两步法包括油包水乳化技术和高温煅烧技术。Air@rGO€Fe3O4空心微球的介电损耗和磁损耗优异,使其具有良好的微波吸收性能。空心微球在石蜡中的添加量为33.3%、厚度为2.8 mm的微球在10 GHz处有最小反射率,为-52 dB,反射率小于-10 dB的频率范围为7.5~14.7 GHz。调节各成分的配比和样品厚度可控制空心微球的吸波性能。随着四氧化三铁含量的提高,微球的最小反射率的峰值位置向高频移动。Air@rGO€Fe3O4空心微球有吸收频率范围宽、吸收强度大以及吸波性能可调控等优点,使其成为具有潜在应用价值的高性能吸波材料。

关键词 复合材料宽频与可控微波吸收性能自组装Air@rGO€Fe3O4空心微球阻抗匹配    
Abstract

Fe3O4 nanoparticles coated hollow microspheres of reduced graphene oxide (Air@rGO€Fe3O4) were synthesized via a simple and efficient two-step method consisting of water-in-oil (W/O) emulsion technique and subsequent annealing process. The Air@rGO€Fe3O4 hollow microspheres showed good electromagnetic properties because of the coexistence of magnetic loss and dielectric loss to microwave. The microwave absorbing bandwidth (reflection loss<-10 dB) for Air@rGO€Fe3O4 of thickness in 2.8 mm (with 33.3 mass% paraffin) locates in the range of 7.5~14.7 GHz, while a minimum reflection loss -52 dB at 10.0 GHz. More interestingly, the microwave absorbing properties of the hollow microspheres can be easily controlled by tuning the ratio of the two components in the composites and the thickness of samples, and as the Fe3O4 content increase, the minimum reflection loss valve of Air@rGO €Fe3O4 microspheres move to higher frequency range. These Air@rGO€Fe3O4 hollow microspheres are great potential candidate as microwave absorbents due to their excellent properties such as wide absorbing frequency, strong absorption, low density and controllable absorbing properties.

Key wordscomposite    wideband and controllable microwave absorption properties    self-assembly    Air@rGO€Fe3O4 hollow microsphere    impedance matching
收稿日期: 2017-05-16     
ZTFLH:  TB332  
基金资助:国防基础科研重点项目(A35201XXXXX),国家自然科学基金(51303106),三束材料改性教育部重点实验室基金(LABKF1502)
作者简介:

作者简介 曾 强,男,1989生,博士生

图1  Air@rGO€Fe3O4空心微球的制备示意图
图2  矢量网络分析仪和同轴测试样品图
图3  在氮气保护下PVA的TGA曲线
图4  氧化石墨烯﹑Sp和S1.0的XRD谱图
图5  S1.0的XPS全谱图,C1s分峰图,Fe2p分峰图和氧化石墨烯C1s分峰图
Concentration of functional groups / %
-C-C- -C-O- -C=O -O-C=O
S1.0 86.43 13.57 0 0
Graphene oxide 46.73 38.78 12.15 2.34
表1  S1.0和氧化石墨烯各个官能团的含量
图6  PVA/AAI/GO前驱体(a)和S1.0的SEM图(b)﹑(c)以及S1.0碎片的TEM图(d)﹑(e)
图7  不同厚度的S0.5﹑S1.0﹑S1.5和Sp的反射率
Samples in matrices % Min|RL|
/dB
Thickness/mm
(RL≤-10 dB)
Frequency range/GHz
(RL≤-10 dB)
Refs
Air@rGO€Fe3O4 microsphere in wax 33 -52.0 2.8 7.2 This work
Silica-nickel-carbon microspheres in wax 40 -37.6 2.4 6.0 [1]
cobalt/polypyrrole in wax 30 -33.0 2.0 4.8 [2]
graphene@Fe3O4@SiO2@PANI in wax 25 -40.7 2.5 5.8 [3]
Co/carbon nanotube-
graphene in wax
30 -65.6 2.2 10.0-13.5 [4]
NiCoP/RGO in wax 75 -17.8 1.5 6.2-9.3 [5]
CoxFe3-xO4(x=0-1) spheres in wax 75 -41.1 2.0 4.2 [6]
Fe3O4/graphene capsules in wax 30 -32.0 3.5 4.2 [7]
RGO-PPy-Co3O4 in wax 50 -43.5 3.2 6.4 [8]
Fe3O4@SiO2@RGO in wax 20 -26.6 3.0 3.6 [9]
graphene@Fe3O4@carbon@MnO2 in wax 25 -38.8 1.8 5.4 [14]
RGO-CoFe2O4/GNSs in cyanate ester resin 13 -21.8 1.2 2.8 [17]
graphene@Fe3O4@C@PANI in wax 25 -44.2 3.0 5.8 [18]
Co-doped MnO2 in wax 20 -17.5 2.0 5.2 [19]
hierarchical NiCo2O4 in wax 50 -25.5 4.0 1.8 [20]
α-Co/graphene in wax 60 -47.5 2.0 3.9 [21]
ring-shaped FeCo@
carbon fiber in wax
20 -37.7 1.8 1.9 [22]
cobalt-cobalt oxide in wax 60 -30.5 1.7 4.7 [23]
rugby-shaped CoFe2O4 in wax 50 -34.1 2.5 2.6 [24]
Fe3O4@ZnO in wax 50 -22.7 3.5 5.9 [25]
hollow porous Ni/SnO2 in wax 50 -36.7 1.7 3.4 [26]
hollow urchinlike α-MnO2 in wax 50 -41.0 1.9 2.5 [27]
RGO/CoFe2O4 in wax 50 -42.2 2.3 5.2 [28]
Ag@Fe3O4/RGO in wax 50 -40.1 2.0 3.1 [29]
graphene@Fe3O4@carbon in wax 25 -30.1 1.8 3.4 [30]
Ni0.5Zn0.5Fe2O4 ferrite nanofiber in wax 15 -14.1 3.6 4.4 [31]
表2  文献中一些吸波材料的吸波性能
Samples RLmin/dB Frequency range/GHz
(RL≤-10 dB)
The bandwidth/GHz
(RL≤-10 dB)
S0.5 -28.5 5.8~9.3 3.5
S1.0 -52 7.5~14.7 7.2
S1.5 -25.9 8.8~14.3 5.5
Sp -11.7 7.9~9.2 1.3
表3  Fe3O4含量不同厚度为2.8 mm的Air@rGO€Fe3O4微球的吸波性能
[1] An Z, Zhang J.Facile large scale preparation and electromagnetic properties of silica-nickel-carbon composite shelly hollow microspheres[J]. Dalton Trans., 2016, 45(7): 2881
[2] Wang H, Ma N, Yan Z, et al.Cobalt/polypyrrole nanocomposites with controllable electromagnetic properties[J]. Nanoscale, 2015, 7(16): 7189
[3] Wang L, Zhu J, Yang H, et al.Fabrication of hierarchical graphene@Fe3O4@SiO2@polyaniline quaternary composite and its improved electrochemical performance[J]. J. Alloys Compd., 2015, 634: 232
[4] Qi X, Hu Q, Xu J, et al.The synthesis and excellent electromagnetic radiation absorption properties of core/shell-structured Co/carbon nanotube-graphene nanocomposites[J]. Rsc Adv., 2016, 6(14): 11382
[5] Ye W, Fu. J, Wang Q, et al. Electromagnetic wave absorption properties of NiCoP alloy nanoparticles decorated on reduced graphene oxide nanosheets[J]. J. Magn. Magn. Mater., 2015, 395: 147
[6] Ji R, Cao C, Chen Z, et al.Solvothermal synthesis of CoxFe3-xO4 spheres and their microwave absorption properties[J]. J. Mater. Chem. C., 2014, 2(29): 5944
[7] Jian X, Wu B, We Y, et al.Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties[J]. Acs Appl. Mater. Inter., 2016, 8(9): 6101
[8] Liu P, Huang Y.Synthesis of reduced graphene oxide-conducting polymers-Co3O4 composites and their excellent microwave absorption properties[J]. Rsc Adv., 2013, 3(41): 19033
[9] Pan Y F, Wang G S, Yue Y H.Fabrication of Fe3O4@SiO2@RGO nanocomposites and their excellent absorption properties with low filler content[J]. Rsc Adv., 2015, 5(88): 71718
[10] Cao M S, Song W L, Hou Z L, et al.The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites[J]. Carbon., 2010, 48(3): 788
[11] Wen B, Cao M S, Liu M M, et al.Reduced Graphene Oxides: Light-Weight and high-efficiency electromagnetic interference shielding at elevated temperatures[J]. Adv. Mater., 2014; 26: 3484
[12] Cao W Q, Wang X X, Yuan J, et al.Temperature dependent microwave absorption of ultrathin graphene composites[J]. J. Mater. Chem. C, 2015, 3(38): 10017
[13] Wang L, Huang Y, Li C, et al.Hierarchical graphene@Fe3O4 nanocluster@carbon@MnO2 nanosheet array composites: synthesis and microwave absorption performance[J]. Phys. Chem. Chem. Phys., 2015, 17(8): 5878
[14] Chen P, Zeng Q, Yu Q, et al. Method for preparing graphene hollow microsphere loaded with magnetic nano particle [P]. China patent, ZL 201510925343.3, 2017(陈平, 曾强, 于祺等. 一种负载磁性纳米粒子的石墨烯空心微球的制备方法[P]. 中国发明专利, ZL 201510925343.3, 2017)
[15] He H, Gao C. Supraparamagnetic, Conductive, Processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles[J]. Acs Appl. Mater. Inter., 2010, 2(11): 3201
[16] Zeng. Q, Xiong. X. H, Chen. P, et al Air@rGO€Fe3O4 microspheres with spongy shells: self-assembly and microwave absorption performance[J]. Journal of Materials Chemistry C. 2016;4(44): 10518
[17] Fang R, Guang Z, Peng R, et al.Cyanate ester resin filled with graphene nanosheets and CoFe2O4-reduced graphene oxide nanohybrids as a microwave absorber[J]. Appl. Surf. Sci., 2015, 351: 40
[18] Wang L, Huang Y, Li C, et al.Hierarchical composites of polyani-line nanorod arrays covalently-grafted on the surfaces of graphene@Fe3O4@C with high microwave absorption performance[J]. Compos. Sci. Technol., 2015, 108: 1
[19] Duan Y, Liu Z, Jing H, et al.Novel microwave dielectric response of Ni/Co-doped manganese dioxides and their microwave absorbing properties[J]. J. Mater. Chem., 2012, 22(35): 18291
[20] Min Z, Fei L, Li T Y, et al.Loss mechanism and microwave absorption properties of hierarchical NiCo2O4 nanomaterial[J]. J. Phys. D: Appl. Phys., 2015, 48(21): 215305
[21] Pan G, Zhu J, Ma S, et al.Enhancing the electromagnetic performance of co through the phase-controlled synthesis of hexagonal and cubic co nanocrystals grown on graphene[J]. Acs Appl. Mater. Inter., 2013, 5(23): 12716
[22] Wan Y, Xiao J, Li C, et al.Microwave absorption properties of FeCo-coated carbon fibers with varying morphologies[J]. J. Magn. Magn. Mater., 2016, 399: 252
[23] Wang Z, Bi H, Wang P, et al.Magnetic and microwave absorption properties of self-assemblies composed of core-shell cobalt-cobalt oxide nanocrystals[J]. Phys. Chem. Chem. Phys., 2015, 17(5): 3796
[24] Zhang S, Jiao Q, Zhao Y, et al.Preparation of rugby-shaped CoFe2O4 particles and their microwave absorbing properties[J]. J. Mater. Chem. A, 2014, 2(42): 18033
[25] Wang Z, Wu L, Zhou J, et al.Enhanced microwave absorption of Fe3O4 nanocrystals after heterogeneously growing with ZnO nanoshell[J]. Rsc Adv., 2013, 3(10): 3309
[26] Zhao B, Zhao W, Shao G, et al.Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO2 hybrids[J]. Dalton Trans., 2015, 44(36): 15984
[27] Zhou M, Zhang X, We J, et al.Morphology-controlled synthesis and novel microwave absorption properties of hollow urchinlike α-MnO2 nanostructures[J]. J. Phys. Chem. C, 2011, 115(5): 1398
[28] Zong M, Huang Y, Zhang N, et al.Influence of (RGO)/(ferrite) ratios and graphene reduction degree on microwave absorption properties of graphene composites[J]. J. Alloys Compd., 2015, 644: 491
[29] Liu G, Jiang W, Wang Y, et al.One-pot synthesis of Ag@Fe3O4/reduced graphene oxide composite with excellent electromagnetic absorption properties[J]. Ceram. Int. Part B, 2015, 41(3): 4982
[30] Huang Y, Wang L, Sun X.Sandwich-structured graphene@Fe3O4@carbon nanocomposites with enhanced electromagnetic absorption properties[J]. Mater. Lett., 2015, 144: 26
[31] Huang X, Zhang J, Lai M, et al.Preparation and microwave absorption mechanisms of the NiZn ferrite nanofibers[J]. J. Alloys Compd., 2015, 627: 367
[32] Kong L, Yin X, Ye F, et al.Electromagnetic wave absorption properties of ZnO-based materials modified with ZnAl2O4 nanograins[J]. J. Phys. Chem. C, 2013, 117(5): 2135
[33] Cao W Q, Wang X X, Cao W Q, et al.Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding[J]. J. Mater. Chem. C, 2015, 3(26): 6589
[34] He J Z, Wang X X, Zhang L Y, et al.Small magnetic nanoparticles decorating reduced graphene oxides to tune the electromagnetic attenuation capacity[J]. J. Mater. Chem. C, 2016, 4(29): 7130
[35] Cao M S, Yang J, Song W L, et al.Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption[J]. ACS Appl.Mater. Inter., 2012, 4(12): 6949
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.