|
|
具有宽频与可控微波吸收性能的石墨烯空心微球的自组装 |
曾强1, 陈平1( ), 于祺2, 徐东卫1 |
1 大连理工大学化工学院 三束材料改性教育部重点实验室 大连 116024 2 沈阳航空航天大学 辽宁省先进聚合物基复合材料重点实验室 沈阳 110136 |
|
Self-assembly of Graphene Hollow Microspheres with Wideband and Controllable Microwave Absorption Properties |
Qiang ZENG1, Ping CHEN1( ), Qi YU2, Dongwei XU1 |
1 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams of Ministry of Education & School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China 2 Liaoning Key Laboratory of Advanced Polymer Matrix Composites, Shenyang Aerospace University, Shenyang 110136, China |
引用本文:
曾强, 陈平, 于祺, 徐东卫. 具有宽频与可控微波吸收性能的石墨烯空心微球的自组装[J]. 材料研究学报, 2018, 32(2): 119-126.
Qiang ZENG,
Ping CHEN,
Qi YU,
Dongwei XU.
Self-assembly of Graphene Hollow Microspheres with Wideband and Controllable Microwave Absorption Properties[J]. Chinese Journal of Materials Research, 2018, 32(2): 119-126.
[1] | An Z, Zhang J.Facile large scale preparation and electromagnetic properties of silica-nickel-carbon composite shelly hollow microspheres[J]. Dalton Trans., 2016, 45(7): 2881 | [2] | Wang H, Ma N, Yan Z, et al.Cobalt/polypyrrole nanocomposites with controllable electromagnetic properties[J]. Nanoscale, 2015, 7(16): 7189 | [3] | Wang L, Zhu J, Yang H, et al.Fabrication of hierarchical graphene@Fe3O4@SiO2@polyaniline quaternary composite and its improved electrochemical performance[J]. J. Alloys Compd., 2015, 634: 232 | [4] | Qi X, Hu Q, Xu J, et al.The synthesis and excellent electromagnetic radiation absorption properties of core/shell-structured Co/carbon nanotube-graphene nanocomposites[J]. Rsc Adv., 2016, 6(14): 11382 | [5] | Ye W, Fu. J, Wang Q, et al. Electromagnetic wave absorption properties of NiCoP alloy nanoparticles decorated on reduced graphene oxide nanosheets[J]. J. Magn. Magn. Mater., 2015, 395: 147 | [6] | Ji R, Cao C, Chen Z, et al.Solvothermal synthesis of CoxFe3-xO4 spheres and their microwave absorption properties[J]. J. Mater. Chem. C., 2014, 2(29): 5944 | [7] | Jian X, Wu B, We Y, et al.Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties[J]. Acs Appl. Mater. Inter., 2016, 8(9): 6101 | [8] | Liu P, Huang Y.Synthesis of reduced graphene oxide-conducting polymers-Co3O4 composites and their excellent microwave absorption properties[J]. Rsc Adv., 2013, 3(41): 19033 | [9] | Pan Y F, Wang G S, Yue Y H.Fabrication of Fe3O4@SiO2@RGO nanocomposites and their excellent absorption properties with low filler content[J]. Rsc Adv., 2015, 5(88): 71718 | [10] | Cao M S, Song W L, Hou Z L, et al.The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites[J]. Carbon., 2010, 48(3): 788 | [11] | Wen B, Cao M S, Liu M M, et al.Reduced Graphene Oxides: Light-Weight and high-efficiency electromagnetic interference shielding at elevated temperatures[J]. Adv. Mater., 2014; 26: 3484 | [12] | Cao W Q, Wang X X, Yuan J, et al.Temperature dependent microwave absorption of ultrathin graphene composites[J]. J. Mater. Chem. C, 2015, 3(38): 10017 | [13] | Wang L, Huang Y, Li C, et al.Hierarchical graphene@Fe3O4 nanocluster@carbon@MnO2 nanosheet array composites: synthesis and microwave absorption performance[J]. Phys. Chem. Chem. Phys., 2015, 17(8): 5878 | [14] | Chen P, Zeng Q, Yu Q, et al. Method for preparing graphene hollow microsphere loaded with magnetic nano particle [P]. China patent, ZL 201510925343.3, 2017(陈平, 曾强, 于祺等. 一种负载磁性纳米粒子的石墨烯空心微球的制备方法[P]. 中国发明专利, ZL 201510925343.3, 2017) | [15] | He H, Gao C. Supraparamagnetic, Conductive, Processable multifunctional graphene nanosheets coated with high-density Fe3O4 nanoparticles[J]. Acs Appl. Mater. Inter., 2010, 2(11): 3201 | [16] | Zeng. Q, Xiong. X. H, Chen. P, et al Air@rGO€Fe3O4 microspheres with spongy shells: self-assembly and microwave absorption performance[J]. Journal of Materials Chemistry C. 2016;4(44): 10518 | [17] | Fang R, Guang Z, Peng R, et al.Cyanate ester resin filled with graphene nanosheets and CoFe2O4-reduced graphene oxide nanohybrids as a microwave absorber[J]. Appl. Surf. Sci., 2015, 351: 40 | [18] | Wang L, Huang Y, Li C, et al.Hierarchical composites of polyani-line nanorod arrays covalently-grafted on the surfaces of graphene@Fe3O4@C with high microwave absorption performance[J]. Compos. Sci. Technol., 2015, 108: 1 | [19] | Duan Y, Liu Z, Jing H, et al.Novel microwave dielectric response of Ni/Co-doped manganese dioxides and their microwave absorbing properties[J]. J. Mater. Chem., 2012, 22(35): 18291 | [20] | Min Z, Fei L, Li T Y, et al.Loss mechanism and microwave absorption properties of hierarchical NiCo2O4 nanomaterial[J]. J. Phys. D: Appl. Phys., 2015, 48(21): 215305 | [21] | Pan G, Zhu J, Ma S, et al.Enhancing the electromagnetic performance of co through the phase-controlled synthesis of hexagonal and cubic co nanocrystals grown on graphene[J]. Acs Appl. Mater. Inter., 2013, 5(23): 12716 | [22] | Wan Y, Xiao J, Li C, et al.Microwave absorption properties of FeCo-coated carbon fibers with varying morphologies[J]. J. Magn. Magn. Mater., 2016, 399: 252 | [23] | Wang Z, Bi H, Wang P, et al.Magnetic and microwave absorption properties of self-assemblies composed of core-shell cobalt-cobalt oxide nanocrystals[J]. Phys. Chem. Chem. Phys., 2015, 17(5): 3796 | [24] | Zhang S, Jiao Q, Zhao Y, et al.Preparation of rugby-shaped CoFe2O4 particles and their microwave absorbing properties[J]. J. Mater. Chem. A, 2014, 2(42): 18033 | [25] | Wang Z, Wu L, Zhou J, et al.Enhanced microwave absorption of Fe3O4 nanocrystals after heterogeneously growing with ZnO nanoshell[J]. Rsc Adv., 2013, 3(10): 3309 | [26] | Zhao B, Zhao W, Shao G, et al.Corrosive synthesis and enhanced electromagnetic absorption properties of hollow porous Ni/SnO2 hybrids[J]. Dalton Trans., 2015, 44(36): 15984 | [27] | Zhou M, Zhang X, We J, et al.Morphology-controlled synthesis and novel microwave absorption properties of hollow urchinlike α-MnO2 nanostructures[J]. J. Phys. Chem. C, 2011, 115(5): 1398 | [28] | Zong M, Huang Y, Zhang N, et al.Influence of (RGO)/(ferrite) ratios and graphene reduction degree on microwave absorption properties of graphene composites[J]. J. Alloys Compd., 2015, 644: 491 | [29] | Liu G, Jiang W, Wang Y, et al.One-pot synthesis of Ag@Fe3O4/reduced graphene oxide composite with excellent electromagnetic absorption properties[J]. Ceram. Int. Part B, 2015, 41(3): 4982 | [30] | Huang Y, Wang L, Sun X.Sandwich-structured graphene@Fe3O4@carbon nanocomposites with enhanced electromagnetic absorption properties[J]. Mater. Lett., 2015, 144: 26 | [31] | Huang X, Zhang J, Lai M, et al.Preparation and microwave absorption mechanisms of the NiZn ferrite nanofibers[J]. J. Alloys Compd., 2015, 627: 367 | [32] | Kong L, Yin X, Ye F, et al.Electromagnetic wave absorption properties of ZnO-based materials modified with ZnAl2O4 nanograins[J]. J. Phys. Chem. C, 2013, 117(5): 2135 | [33] | Cao W Q, Wang X X, Cao W Q, et al.Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding[J]. J. Mater. Chem. C, 2015, 3(26): 6589 | [34] | He J Z, Wang X X, Zhang L Y, et al.Small magnetic nanoparticles decorating reduced graphene oxides to tune the electromagnetic attenuation capacity[J]. J. Mater. Chem. C, 2016, 4(29): 7130 | [35] | Cao M S, Yang J, Song W L, et al.Ferroferric oxide/multiwalled carbon nanotube vs polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption[J]. ACS Appl.Mater. Inter., 2012, 4(12): 6949 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|