|
|
基于位错密度理论的超高强双相钢DP1000热变形本构模型 |
徐梅1, 米振莉1( ), 李辉2, 唐荻3, 江海涛1 |
1 北京科技大学 工程技术研究院 北京 100083 2 烟台南山学院工学院 烟台 265700 3 北京科技大学 钢铁共性技术协同创新中心 北京 100083 |
|
Constitutive Model Based on Dislocation Density Theory for Hot Deformation Behavior of Ultra-high Strength Dual Phase Steel DP1000 |
Mei XU1, Zhenli MI1( ), Hui LI2, Di TANG3, Haitao JIANG1 |
1 Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China 2 College of Engineering,Yantai Nanshan University, Yantai 265700, China 3 Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China |
引用本文:
徐梅, 米振莉, 李辉, 唐荻, 江海涛. 基于位错密度理论的超高强双相钢DP1000热变形本构模型[J]. 材料研究学报, 2017, 31(8): 576-584.
Mei XU,
Zhenli MI,
Hui LI,
Di TANG,
Haitao JIANG.
Constitutive Model Based on Dislocation Density Theory for Hot Deformation Behavior of Ultra-high Strength Dual Phase Steel DP1000[J]. Chinese Journal of Materials Research, 2017, 31(8): 576-584.
[1] | Tang D, Mi Z L, Chen Y L.Technology and research and development of advanced automobile steel abroad[J]. Iron&Steel, 2005, 40(6): 1(唐荻, 米振莉, 陈雨来. 国外新型汽车用钢的技术要求及研究开发现状[J]. 钢铁, 2005, 40(6): 1) | [2] | Yu W H, Zhou B B, Su J J, et al.Research on the deformation resis tance of 600 MPa hot-rolled DP steel[J]. China Metallurgy,2012, 22(11): 21(余万华, 周斌斌, 苏捷杰等.热轧DP600双相钢变形抗力的研究[J]. 中国冶金, 2012, 22(11): 21) | [3] | Chen J, Li H T, Hu J P, et al.Experimental research on deformation resistance of hot-rolled DP600 dual phase steel[J]. Hot Working Technology, 2014, 43(9): 64(陈靖, 李宏图, 胡建平等. 热轧DP600双相钢变形抗力的实验研究[J]. 热加工工艺, 2014, 43(9): 64) | [4] | Pang Q H, Tang D, Zhao Z Z.Micrstructure based model for the stress-strain relationship of hot rolled dual phase steel[J]. Chin. J. of Eng.,2015, 37(11): 1442(庞启航, 唐荻, 赵征志. 热轧双相钢微观应力-应变模型[J]. 工程科学学报, 2015, 37(11): 1442) | [5] | Saeidi N, Ashrafizadeh F, Niroumand B.Development of a new ultrafine grained dual phase steel and examination of the effect of grain size on tensile deformation behavior[J]. Mater. Sci.Eng., A, 2014, (599): 145 | [6] | Dai Q F, Song R B, Cai H J, et al.Tensile mechanical behavior of ultra-high strength cold rolled dual phase steel DP1000 at high strain rates[J]. Chin. J. Mater. Res., 2013, 27(1): 25(代启锋, 宋仁伯, 蔡恒君等. 超高强冷轧双相钢DP1000高应变速率下的拉伸性能[J]. 材料研究学报, 2013, 27(1): 25) | [7] | HosseiniH T, Anbarlooie B, Kadkhodapour J.Micromechanics stress-strain behavior prediction of dual phase steel considering plasticity and grain boundaries debonding[J]. Mater. Des., 2015, (68): 167 | [8] | Wei X, Fu L M, Liu S C, et al.Deformation behavior of constituent phases and the affected factors in dual-phase steel[J]. Chin. J. Mater. Res., 2013, 27(6): 665(魏兴, 付立铭, 刘世昌等.双相钢组成相的变形行为及其影响因素[J]. 材料研究学报, 2013, 27(6): 665) | [9] | Wang Z G, Zhao A M, Ye J Y, et al.Microstructure and textural evolution of micro-carbon DP steel during the heating stage of continued annealing process[J]. Chin. J. Mater. Res., 2013, 27(6): 561(汪志刚, 赵爱民, 叶洁云等. 微碳DP钢在连续退火加热段的组织与织构演变[J]. 材料研究学报, 2013, 27(6): 561) | [10] | Dong D Y, Liu C, Wang L, et al.Effect of strain rate on dynamic deformation behavior of DP780 steel[J]. Acta Metall. Sin., 2013, 49(2): 159(董丹阳, 刘畅, 王磊等.应变速率对DP780钢动态拉伸变形行为的影响[J]. 金属学报, 2013, 49(2): 159) | [11] | Azarbarmas M, Aghaie-Khafri M, Cabrera J M, et al.Dynamic recrystallization mechanisms and twining evolution during hot deformation of Inconel 718[J].Mater. Sci. Eng. A, 2016, (678): 137 | [12] | Yang S L, Shen J, Yan X D, et al.Dynamic recrystallization kinetics and nucleation mechanism of Al-Cu-Li alloy based on flow behavior[J]. Chin. J. Nonferrous Met., 2016, 26(2): 365(杨胜利, 沈健, 闫晓东等. 基于Al-Cu-Li合金流变行为的动态再结晶动力学与形核机制[J]. 中国有色金属学报, 2016, 26(2): 365) | [13] | Jiang H T, Zeng S W, Zhao A M,et al.Hot deformation behavior of β phase containing γ-TiAl alloy[J]. Mater. Sci. Eng. A, 2016, (661): 160 | [14] | Chen J, Tang S, Zhou Y L, et al.Microstructure and textural evolution of micro-carbon DP steel during the heating stage of continued annealing process[J]. Chin. J. Mater. Res., 2012, 26(2): 199(陈俊, 唐帅, 周砚磊等. 低碳Q690qENH高强桥梁钢的动态再结晶行为[J]. 材料研究学报, 2012, 26(2): 199) | [15] | Bi J F, Li Z L, Shan Q, et al.Investigation on high temperature deformation behavior and microstructure evolution of Si-Mn-Cr-B Alloy steel[J]. Chin. J. Mater. Res., 2016, 30(8): 595(毕金凤, 李祖来, 山泉等. Si-Mn-Cr-B合金钢的高温变形行为及组织演变研究[J]. 材料研究学报, 2016, 30(8): 595) | [16] | Lin Y C, Chen M S, Zhong J.Constitutive modeling for elevated temperature flow behavior of 42CrMo steel[J].Comput. Mater. Sci., 2008, (42): 470 | [17] | Ding Z Y, Hu Q D, Zeng L,et al.Hot deformation characteristics of as-cast high-Cr ultra-super-critical rotor steel with columnar grains[J]. Int. J. Minerals, Metall. Mater.,2016, 23(11): 1275 | [18] | Yu W, Xu L X, Zhang Y, et al.Constitutive equation for high temperature flow stress of 95CrMo steel[J]. Trans. Mater. Heat Treat., 2015, 36(10): 262(余伟, 许立雄, 张昳等. 95CrMo钢高温流变应力的本构方程[J].材料热处理学报, 2015, 36(10): 262) | [19] | Zhou J H, Guan K Z.Theflowstressofalloystructuralsteelsathightemperature andhigh strain rate[J]. Acta Metall. Sin., 1986, 22(1): 123(周纪华, 管克智. 高温高速下合金结构钢流动应力研究[J].金属学报, 1986, 22(1): 123) | [20] | Qi L, Zhao Z Z, Zhao A M.High temperature deformation behavior of X100 pipeline steel[J].J.Wuhan Univ. Sci. Technol., 2012, 35(3): 178(齐亮, 赵征志, 赵爱民. X100管线钢的高温变形力学行为[J].武汉科技大学学报, 2012, 35(3): 178) | [21] | Wen D X, Lin Y C, Li H B, et al.Hot deformation behavior and processing map of a typical Ni-based superalloy[J]. Mater. Sci.Eng. A, 2014, (591): 183 | [22] | Mejía I, Reyes Calderón F, Cabrera J M.Modeling the hot flow behavior of a Fe-22Mn-0.41C-1.6Al-1.4Si TWIPsteel microalloyed with Ti, V and Nb[J].Mater. Sci. Eng. A, 2015, (644): 374 | [23] | Bergstr?m Y.A dislocation model for the stress-strain behavior of polycrystalline α-Fe with special emphasis on the variation of the densities of mobile and immobile dislocations[J]. Mater. Sci. Eng. A, 1970, 5(4): 193 | [24] | Yoshie A, Fujita T, Fujioka M, et al.Formulation of the Decrease in Dislocation Density of Deformed Austenite Due to Static Recovery and Recrystallization[J]. ISIJ Int., 1996, 36(4): 474 | [25] | Xu S J, Shi C S, Zhao N Q, et al.Dynamic recrystallization phenomenon in hot-working process by multi-phase-field model[J].Acta Phys. Sin., 2012, 61(11): 116101(徐树杰, 师春生, 赵乃勤等. 热加工过程中动态再结晶现象的多相场研究[J]. 物理学报, 2012, 61(11): 116101) | [26] | Lin Y C, Chen X.A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J]. Mater. Des., 2011, 32(4): 1733 | [27] | Yanagida A, Liu J, Yanagimoto J.Flow curve determination for metal under dynamic recrystallization using inverse analysis[J].Mater. Trans., 2003, 44(11): 2303 | [28] | Ryan N D, Mcqueen H J.Dynamic Softening Mechanisms in 304 Austenitic Stainless Steel[J]. Can. Metall. Q., 1990, 29(2): 147 | [29] | Meckingh, Kocksu F.Kinetics of Flow and Strain-Hardening[J].Acta Metallurgical, 1981, 29(11): 1865 | [30] | Poliak E I, Jonas J J.A One-Parmenter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization[J]. Acta Mater.,1996, 44(1): 127 | [31] | Najafizadeh A, Jonas J J.Predicting the critical stress for initiation of dynamic recrystallization[J]. ISIJ Int., 2006, 46(11): 1679 | [32] | Haghdada N, Martin D, Hodgson P.Physically-based constitutive modelling of hot deformation behavior in a LDX 2101 duplex stainless steel[J]. Mater. Des., 2016, (106): 420 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|