Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (8): 576-584    DOI: 10.11901/1005.3093.2016.728
  研究论文 本期目录 | 过刊浏览 |
基于位错密度理论的超高强双相钢DP1000热变形本构模型
徐梅1, 米振莉1(), 李辉2, 唐荻3, 江海涛1
1 北京科技大学 工程技术研究院 北京 100083
2 烟台南山学院工学院 烟台 265700
3 北京科技大学 钢铁共性技术协同创新中心 北京 100083
Constitutive Model Based on Dislocation Density Theory for Hot Deformation Behavior of Ultra-high Strength Dual Phase Steel DP1000
Mei XU1, Zhenli MI1(), Hui LI2, Di TANG3, Haitao JIANG1
1 Institute of Engineering Technology, University of Science and Technology Beijing, Beijing 100083, China
2 College of Engineering,Yantai Nanshan University, Yantai 265700, China
3 Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
引用本文:

徐梅, 米振莉, 李辉, 唐荻, 江海涛. 基于位错密度理论的超高强双相钢DP1000热变形本构模型[J]. 材料研究学报, 2017, 31(8): 576-584.
Mei XU, Zhenli MI, Hui LI, Di TANG, Haitao JIANG. Constitutive Model Based on Dislocation Density Theory for Hot Deformation Behavior of Ultra-high Strength Dual Phase Steel DP1000[J]. Chinese Journal of Materials Research, 2017, 31(8): 576-584.

全文: PDF(979 KB)   HTML
摘要: 

对超高强双相钢DP1000进行单道次热模拟压缩实验,研究了其在950~1150℃和0.05~10 s-1条件下的热变形行为,分析了变形温度和变形速率对流变应力的影响,建立了基于位错密度理论的热力学本构模型,确定了可表征微观硬化和软化机制的材料特征参数,量化了加工硬化、动态回复和动态再结晶对宏观力学行为的影响。结果表明:超高强双相钢DP1000的热变形应变速率ε˙≤0.05 s-1时以动态再结晶软化机制为主,应变速率ε˙>0.1 s-1时以动态回复软化机制为主,应变速率0.05 s-1<ε˙≤0.1 s-1时由这两种软化机制共同作用。这个本构模型的预测值与实验值具有较高的一致性,能准确预测超高强双相钢DP1000在高温变形条件下的流变应力。

关键词 金属材料位错密度本构关系超高强双相钢动态再结晶临界应变    
Abstract

The compression deformation behavior of ultra-high strength dual phase steel (UHS-DP1000) was investigated by strain rates from 0.05 s-1 to 10 s-1 at temperatures from 950°C to 1150°C. The influence of deformation temperature and strain rate on the hot flow curves was analyzed. Then a constitutive model for hot deformation of the steel UHS-DP1000 was established based on the dislocation density theory. The relevant softening mechanism of the steel was revealed in terms of the following two aspects that by low strain rates (lower than 0.05 s-1) at high temperatures the dynamic recrystallization (DRX) softening mechanism was more evident, while by strain rates higher than 0.1 s-1 the dynamic recovery (DRV) softening mechanism was dominant. The two softening mechanisms worked simultaneously by strain rates in a range between 0.05 s-1 and 0.1 s-1. The stress-strain values predicted by the present model for the steel UHS-DP1000 are well agreed with those acquired from experiments, which further confirmed that the established constitutive model could give an accurate estimate for the flow stress of high temperature deformation of the steel UHS-DP1000.

Key wordsmetallic materials    dislocation density    constitutive relationship    ultra-high strength dual phase steel (UHS-DP1000)    dynamic recrystallization    critical strain
收稿日期: 2016-12-11     
ZTFLH:  TG111  
基金资助:国家自然科学基金(51371032)
作者简介:

作者简介 徐 梅,女,1983年生,博士生

图1  超高强双相钢DP1000不同变形条件下的流变应力曲线
Deformation temperature/℃ Srain rate/s-1 Softening mechanism
1050~1150 ≤0.1 work hardening (WH)-dynamic recovery (DRV)-dynamic recrystallization (DRX)
950~1050 ≤0.05
1050~1150 >0.1 work hardening (WH)-dynamic recovery (DRV)
950~1050 >0.05
表1  UHS-DP1000在不同变形条件下的软化机制
图2  UHS-DP1000在不同变形条件下应力与加工硬化率的关系
图3  在950℃、0.05 s-1变形条件下加工硬化率与应力和应变及其三次多项式拟合关系图
图4  基于θ-σ曲线和lnθ-ε曲线三次多项式拟合出的峰值应力与临界应力、峰值应变与临界应变的关系
No. Strain rate/s-1 Deformation temperature/℃ σsat r F2 a
d01 0.05 1150 58.3 7.038 41.95 -297.9
d02 0.05 1100 70.92 5.722 50.43 -181.2
d03 0.05 1050 85.05 5.48 64.64 -159.5
d04 0.05 1000 95.95 5.292 77.17 -66.84
d05 0.05 950 114.9 4.875 85.45 -35.88
d10 0.1 1150 59.32 7.325 46.59 -244.4
d09 0.1 1100 65.68 6.451 56.75 -170.5
d08 0.1 1050 83.93 6.376 71.28 -100.8
d07 0.1 1000 104.7 5.836
d06 0.1 950 126.7 5.339
d11 1 1150 80.89 7.331
d12 1 1100 97.52 6.829
d13 1 1050 105.4 5.852
d14 1 1000 145.3 5.474
d15 1 950 170 5.322
d20 5 1150 104.9 6.447
d19 5 1100 122.2 6.408
d18 5 1050 145.1 6.332
d17 5 1000 163.7 6.004
d16 5 950 187.6 5.723
d21 10 1150 110 7.355
d22 10 1100 134.4 6.848
d23 10 1050 152.5 6.356
d24 10 1000 183 5.728
d25 10 950 210.3 5.106
表2  各工况下本构关系模型参数的计算值
Deformation temperature/°C Strain rate/s-1 Hot deformation constitutive model
1050~1150 ≤0.1 σ=σsat2-σsat2-σ02exp-12,ε&lt;εcσ=σp-F2expaε-εp2+F2,ε&gt;εc
σsat=1.042×ε˙-0.01566exp47460RT
r=75.84×ε˙0.1254exp-24380RT
F2=0.9203×ε˙0.1676exp51660RT
a=-9.785×106×ε˙-0.2707exp-132700RT
950~1050 ≤0.05
1050~1150 >0.1 σ=σsat2-σsat2-σ02exp-12
σsat=4.333×ε˙0.1144exp28700RT
r=25.95×ε˙0.002238exp-12490RT
950~1050 >0.05
表3  不同工况下UHS-DP1000的本构关系
图5  不同变形条件下的预测流变应力值与实验值的比较
[1] Tang D, Mi Z L, Chen Y L.Technology and research and development of advanced automobile steel abroad[J]. Iron&Steel, 2005, 40(6): 1(唐荻, 米振莉, 陈雨来. 国外新型汽车用钢的技术要求及研究开发现状[J]. 钢铁, 2005, 40(6): 1)
[2] Yu W H, Zhou B B, Su J J, et al.Research on the deformation resis tance of 600 MPa hot-rolled DP steel[J]. China Metallurgy,2012, 22(11): 21(余万华, 周斌斌, 苏捷杰等.热轧DP600双相钢变形抗力的研究[J]. 中国冶金, 2012, 22(11): 21)
[3] Chen J, Li H T, Hu J P, et al.Experimental research on deformation resistance of hot-rolled DP600 dual phase steel[J]. Hot Working Technology, 2014, 43(9): 64(陈靖, 李宏图, 胡建平等. 热轧DP600双相钢变形抗力的实验研究[J]. 热加工工艺, 2014, 43(9): 64)
[4] Pang Q H, Tang D, Zhao Z Z.Micrstructure based model for the stress-strain relationship of hot rolled dual phase steel[J]. Chin. J. of Eng.,2015, 37(11): 1442(庞启航, 唐荻, 赵征志. 热轧双相钢微观应力-应变模型[J]. 工程科学学报, 2015, 37(11): 1442)
[5] Saeidi N, Ashrafizadeh F, Niroumand B.Development of a new ultrafine grained dual phase steel and examination of the effect of grain size on tensile deformation behavior[J]. Mater. Sci.Eng., A, 2014, (599): 145
[6] Dai Q F, Song R B, Cai H J, et al.Tensile mechanical behavior of ultra-high strength cold rolled dual phase steel DP1000 at high strain rates[J]. Chin. J. Mater. Res., 2013, 27(1): 25(代启锋, 宋仁伯, 蔡恒君等. 超高强冷轧双相钢DP1000高应变速率下的拉伸性能[J]. 材料研究学报, 2013, 27(1): 25)
[7] HosseiniH T, Anbarlooie B, Kadkhodapour J.Micromechanics stress-strain behavior prediction of dual phase steel considering plasticity and grain boundaries debonding[J]. Mater. Des., 2015, (68): 167
[8] Wei X, Fu L M, Liu S C, et al.Deformation behavior of constituent phases and the affected factors in dual-phase steel[J]. Chin. J. Mater. Res., 2013, 27(6): 665(魏兴, 付立铭, 刘世昌等.双相钢组成相的变形行为及其影响因素[J]. 材料研究学报, 2013, 27(6): 665)
[9] Wang Z G, Zhao A M, Ye J Y, et al.Microstructure and textural evolution of micro-carbon DP steel during the heating stage of continued annealing process[J]. Chin. J. Mater. Res., 2013, 27(6): 561(汪志刚, 赵爱民, 叶洁云等. 微碳DP钢在连续退火加热段的组织与织构演变[J]. 材料研究学报, 2013, 27(6): 561)
[10] Dong D Y, Liu C, Wang L, et al.Effect of strain rate on dynamic deformation behavior of DP780 steel[J]. Acta Metall. Sin., 2013, 49(2): 159(董丹阳, 刘畅, 王磊等.应变速率对DP780钢动态拉伸变形行为的影响[J]. 金属学报, 2013, 49(2): 159)
[11] Azarbarmas M, Aghaie-Khafri M, Cabrera J M, et al.Dynamic recrystallization mechanisms and twining evolution during hot deformation of Inconel 718[J].Mater. Sci. Eng. A, 2016, (678): 137
[12] Yang S L, Shen J, Yan X D, et al.Dynamic recrystallization kinetics and nucleation mechanism of Al-Cu-Li alloy based on flow behavior[J]. Chin. J. Nonferrous Met., 2016, 26(2): 365(杨胜利, 沈健, 闫晓东等. 基于Al-Cu-Li合金流变行为的动态再结晶动力学与形核机制[J]. 中国有色金属学报, 2016, 26(2): 365)
[13] Jiang H T, Zeng S W, Zhao A M,et al.Hot deformation behavior of β phase containing γ-TiAl alloy[J]. Mater. Sci. Eng. A, 2016, (661): 160
[14] Chen J, Tang S, Zhou Y L, et al.Microstructure and textural evolution of micro-carbon DP steel during the heating stage of continued annealing process[J]. Chin. J. Mater. Res., 2012, 26(2): 199(陈俊, 唐帅, 周砚磊等. 低碳Q690qENH高强桥梁钢的动态再结晶行为[J]. 材料研究学报, 2012, 26(2): 199)
[15] Bi J F, Li Z L, Shan Q, et al.Investigation on high temperature deformation behavior and microstructure evolution of Si-Mn-Cr-B Alloy steel[J]. Chin. J. Mater. Res., 2016, 30(8): 595(毕金凤, 李祖来, 山泉等. Si-Mn-Cr-B合金钢的高温变形行为及组织演变研究[J]. 材料研究学报, 2016, 30(8): 595)
[16] Lin Y C, Chen M S, Zhong J.Constitutive modeling for elevated temperature flow behavior of 42CrMo steel[J].Comput. Mater. Sci., 2008, (42): 470
[17] Ding Z Y, Hu Q D, Zeng L,et al.Hot deformation characteristics of as-cast high-Cr ultra-super-critical rotor steel with columnar grains[J]. Int. J. Minerals, Metall. Mater.,2016, 23(11): 1275
[18] Yu W, Xu L X, Zhang Y, et al.Constitutive equation for high temperature flow stress of 95CrMo steel[J]. Trans. Mater. Heat Treat., 2015, 36(10): 262(余伟, 许立雄, 张昳等. 95CrMo钢高温流变应力的本构方程[J].材料热处理学报, 2015, 36(10): 262)
[19] Zhou J H, Guan K Z.Theflowstressofalloystructuralsteelsathightemperature andhigh strain rate[J]. Acta Metall. Sin., 1986, 22(1): 123(周纪华, 管克智. 高温高速下合金结构钢流动应力研究[J].金属学报, 1986, 22(1): 123)
[20] Qi L, Zhao Z Z, Zhao A M.High temperature deformation behavior of X100 pipeline steel[J].J.Wuhan Univ. Sci. Technol., 2012, 35(3): 178(齐亮, 赵征志, 赵爱民. X100管线钢的高温变形力学行为[J].武汉科技大学学报, 2012, 35(3): 178)
[21] Wen D X, Lin Y C, Li H B, et al.Hot deformation behavior and processing map of a typical Ni-based superalloy[J]. Mater. Sci.Eng. A, 2014, (591): 183
[22] Mejía I, Reyes Calderón F, Cabrera J M.Modeling the hot flow behavior of a Fe-22Mn-0.41C-1.6Al-1.4Si TWIPsteel microalloyed with Ti, V and Nb[J].Mater. Sci. Eng. A, 2015, (644): 374
[23] Bergstr?m Y.A dislocation model for the stress-strain behavior of polycrystalline α-Fe with special emphasis on the variation of the densities of mobile and immobile dislocations[J]. Mater. Sci. Eng. A, 1970, 5(4): 193
[24] Yoshie A, Fujita T, Fujioka M, et al.Formulation of the Decrease in Dislocation Density of Deformed Austenite Due to Static Recovery and Recrystallization[J]. ISIJ Int., 1996, 36(4): 474
[25] Xu S J, Shi C S, Zhao N Q, et al.Dynamic recrystallization phenomenon in hot-working process by multi-phase-field model[J].Acta Phys. Sin., 2012, 61(11): 116101(徐树杰, 师春生, 赵乃勤等. 热加工过程中动态再结晶现象的多相场研究[J]. 物理学报, 2012, 61(11): 116101)
[26] Lin Y C, Chen X.A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J]. Mater. Des., 2011, 32(4): 1733
[27] Yanagida A, Liu J, Yanagimoto J.Flow curve determination for metal under dynamic recrystallization using inverse analysis[J].Mater. Trans., 2003, 44(11): 2303
[28] Ryan N D, Mcqueen H J.Dynamic Softening Mechanisms in 304 Austenitic Stainless Steel[J]. Can. Metall. Q., 1990, 29(2): 147
[29] Meckingh, Kocksu F.Kinetics of Flow and Strain-Hardening[J].Acta Metallurgical, 1981, 29(11): 1865
[30] Poliak E I, Jonas J J.A One-Parmenter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization[J]. Acta Mater.,1996, 44(1): 127
[31] Najafizadeh A, Jonas J J.Predicting the critical stress for initiation of dynamic recrystallization[J]. ISIJ Int., 2006, 46(11): 1679
[32] Haghdada N, Martin D, Hodgson P.Physically-based constitutive modelling of hot deformation behavior in a LDX 2101 duplex stainless steel[J]. Mater. Des., 2016, (106): 420
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.