|
|
微量Ta和Zr对Fe-Cr-Al系不锈钢高温组织稳定性的影响 |
张军政1, 温冬辉1, 姜贝贝1, 张瑞谦2, 王清1( ), 董闯1 |
1 大连理工大学 三束材料改性教育部重点实验室 材料科学与工程学院 大连 116024 2 中国核动力研究设计院 反应堆燃料及材料重点实验室 成都 610213 |
|
Effect of Minor Ta- and Zr-alloying on High-temperature Microstructural Stability of Fe-Cr-Al-based Ferritic Stainless Steels |
Junzheng ZHANG1, Donghui WEN1, Beibei JIANG1, Ruiqian ZHANG2, Qing WANG1( ), Chuang DONG1 |
1 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China 2 Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610041, China |
引用本文:
张军政, 温冬辉, 姜贝贝, 张瑞谦, 王清, 董闯. 微量Ta和Zr对Fe-Cr-Al系不锈钢高温组织稳定性的影响[J]. 材料研究学报, 2017, 31(5): 336-344.
Junzheng ZHANG,
Donghui WEN,
Beibei JIANG,
Ruiqian ZHANG,
Qing WANG,
Chuang DONG.
Effect of Minor Ta- and Zr-alloying on High-temperature Microstructural Stability of Fe-Cr-Al-based Ferritic Stainless Steels[J]. Chinese Journal of Materials Research, 2017, 31(5): 336-344.
[1] | Zhao W J, Zhou B X, Miao Z, et al.Development of Chinese advanced Zirconium alloys[J]. Atom. Energy. Sci. Technol., 2005, 39(suppl): 2(赵文金,周邦新,苗志等. 我国高性能锆合金的发展[J]. 原子能科学技术,2005,39(增刊): 2) | [2] | Cockeram B V, Leonard K J, Byun T S, et al.Development of microstructure and irradiation hardening of Zircaloy during low dose neutron irradiation at nominally 377-440℃[J]. J. Nucl. Mater., 2014, 449(1-3): 69 | [3] | Liu W Q, Li Q, Zhou B X, et al.Effect of heat treatment on the microstructure and corrosion resistance of a Zr-Sn-Nb-Fe-Cr alloy[J]. J. Nucl. Mater., 2005, 341(2-3): 97 | [4] | Leistikow S, Schanz G.Oxidation kinetics and related phenomena of Zircaloy-4 fuel cladding exposed to high temperature steam and hydrogen-steam mixtures under PWR accident conditions[J]. Nucl. Eng. Des., 1987, 103(1): 65 | [5] | Azevedo C R F. Review: Selection of fuel cladding materials for nuclear fission reactors[J]. Eng. Fail. Anal., 2011, 18: 1943 | [6] | Pint B A, Terrani K A, Yamamoto Y, et al.Material selection for accident tolerant fuel cladding[J]. Metall. Mater. Trans. E., 2015, 2(3): 190 | [7] | Rebak R B.Alloy selection for accident tolerant fuel cladding in commercial light water reactors[J]. Metall. Mater. Trans. E., 2015, 2(4): 197 | [8] | Wu X, Kozlowski T, Hales J D.Neutronics and fuel performance evaluation of accident tolerant FeCrAl cladding under normal operation conditions[J]. Ann. Nucl. Energy., 2015, 85: 763 | [9] | George N M, Terrani K, Powers J, et al.Neutronic analysis of candidate accident-tolerant cladding concepts in pressurized water reactors[J]. Ann. Nucl. Energy., 2015, 75: 703 | [10] | Pint B A, Terrani K A, Brady M P, et al.High temperature oxidation of fuel cladding candidate materials in steam-hydrogen environments[J]. J. Nucl. Mater., 2013, 440: 420 | [11] | Cheng T, Keiser J R, Brady M P, et al.Oxidation of fuel cladding candidate materials in steam environments at high temperature and pressure[J]. J. Nucl. Mater., 2012, 427(1-3): 396 | [12] | Terrani K A, Zinkle S J, Snead L L, et al.Advanced oxidation-resistant iron-based alloys for LWR fuel cladding[J]. J. Nucl. Mater., 2014, 448(1-3): 420 | [13] | Terrani K A, Pint B A, Kim Y J, et al.Uniform corrosion of FeCrAl alloys in LWR coolant environments[J]. J. Nucl. Mater., 2016, 479 : 36 | [14] | Qu H P, Lang Y P, Yao C F, et al.The effect of heat treatment on recrystallized microstructure, precipitation and ductility of hot-rolled Fe-Cr-Al-REM ferritic stainless steel sheets[J]. Mater. Sci. Eng. A., 2013, 562: 9 | [15] | Stott F H, Wood G C, Stringer J.The influence of alloying elements on the development and maintenance of protective scales[J]. Oxid. Metals., 1995, 44: 113 | [16] | Capdevila C, Chao J, Jimenez J A, et al.Effect of nanoscale precipitation on strengthening of ferritic ODS Fe-Cr-Al alloy[J]. Mater. Sci. Technol., 2013, 29(10): 1179 | [17] | Field K G, Gussev M N, Yamamoto Y, et al.Deformation behavior of laser welds in high temperature oxidation resistant Fe-Cr-Al alloys for fuel cladding applications[J]. J. Nicl. Mater., 2014, 454:352 | [18] | Yamamoto Y, Pint B A, Terrani K A, et al.Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors[J]. J. Nucl. Mater., 2015, 467: 703 | [19] | Dong C, Wang Q, Qiang J B, et al.From clusters to phase diagrams: composition rules of quasicrystals and bulk metallic glasses[J]. J. Phys. D.-Appl. Phys., 2007, 40: R273 | [20] | Hao C P, Wang Q, Ma R T, et al.Cluster-plus-glue-atom model in bcc solid solution alloys[J]. Acta. Phys. Sin., 2011, 60(11): 116101(郝传璞,王清,马仁涛等. 体心立方固溶体合金中的“团簇+连接原子”结构模型[J]. 物理学报,2011,60(11): 116101) | [21] | Hong H L, Wang Q, Dong C, et al.Understanding the Cu-Zn brass alloys using a short-range-order cluster model: significance of specific compositions of industrial alloys[J]. Sci. Rep., 2014, 4(2): 7065 | [22] | Pang C, Jiang B B, Shi Y, et al.Cluster-plus-glue-atom model and universal composition formulas [cluster](glue atom)χ for BCC solid solution alloys[J]. J. Alloys Compd., 2015, 652: 63 | [23] | Wang Q, Zha Q F, Liu E X, et al.Composition design of superhigh strength maraging stainless steels using a cluster model[J]. Acta. Metall. Sin., 2012, 48(10): 1201(王清,查前锋,刘恩雪等. 基于团簇模型的高强度马氏体沉淀硬化不锈钢成分设计[J]. 金属学报,2012,48(10): 1201) | [24] | Wang Q, Ji C J, Wang Y M, et al.β-Ti Alloys with Low Young's Moduli Interpreted by Cluster-Plus-Glue-Atom Model[J]. Metall. Mater. Trans. A., 2013, 44(4): 1872 | [25] | Li Z, Zhang R Q, Zha Q F, et al.Composition design of superhigh strength maraging stainless steels using a cluster model[J]. Prog. Nat. Sci. Mater. Int., 2014, 24(1): 35 | [26] | Zhang J, Wang Q, Wang Y M, et al.Revelation of solid solubility limit Fe/Ni = 1/12 in corrosion-resistant Cu-Ni alloys and relevant cluster model[J]. J. Mater. Res., 2010, 45(2): 328 | [27] | Takeuchi A, Inoue A.Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Mater. Trans., 2005, 46(12): 2817 | [28] | Cowley J M.An approximate theory of order in alloys[J]. Phys. Rev., 1950, 77(5): 669 | [29] | Cowley J M.Short-and long-range order parameters in disordered solid solutions[J]. Phys. Rev., 1960, 120(5): 1648 | [30] | Cowley J M.Short-range order and long-range order parameters[J]. Phys. Rev., 1965, 138(5A): A1384 | [31] | Wang Q, Li Q, Li X N, et al.Microstructures and stability origins of β-(Ti, Zr)-(Mo, Sn)-Nb alloys with low Young's modulus[J]. Metall. Mater. Trans. A., 2015, 46(9): 3924 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|