Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (5): 336-344    DOI: 10.11901/1005.3093.2016.695
  论文 本期目录 | 过刊浏览 |
微量Ta和Zr对Fe-Cr-Al系不锈钢高温组织稳定性的影响
张军政1, 温冬辉1, 姜贝贝1, 张瑞谦2, 王清1(), 董闯1
1 大连理工大学 三束材料改性教育部重点实验室 材料科学与工程学院 大连 116024
2 中国核动力研究设计院 反应堆燃料及材料重点实验室 成都 610213
Effect of Minor Ta- and Zr-alloying on High-temperature Microstructural Stability of Fe-Cr-Al-based Ferritic Stainless Steels
Junzheng ZHANG1, Donghui WEN1, Beibei JIANG1, Ruiqian ZHANG2, Qing WANG1(), Chuang DONG1
1 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
2 Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu 610041, China
引用本文:

张军政, 温冬辉, 姜贝贝, 张瑞谦, 王清, 董闯. 微量Ta和Zr对Fe-Cr-Al系不锈钢高温组织稳定性的影响[J]. 材料研究学报, 2017, 31(5): 336-344.
Junzheng ZHANG, Donghui WEN, Beibei JIANG, Ruiqian ZHANG, Qing WANG, Chuang DONG. Effect of Minor Ta- and Zr-alloying on High-temperature Microstructural Stability of Fe-Cr-Al-based Ferritic Stainless Steels[J]. Chinese Journal of Materials Research, 2017, 31(5): 336-344.

全文: PDF(7216 KB)   HTML
摘要: 

用团簇成分式方法对Fe-Cr-Al-Mo-Nb合金进行成分解析,并在此基础上确定了Fe-Cr-Al三元基础成分式Fe75Al9.375Cr15.625 (at.%),进而添加Mo、Nb、Ta和Zr元素替代部分Cr元素。采用真空电弧熔炼制备设计的母合金锭,然后进行1200℃/2 h固溶处理,进而在800℃进行多道次热轧成板,再进行800℃/24 h时效处理,最后在不同温度进行高温固溶处理,研究了微量元素添加对合金高温组织稳定性的影响。结果表明, 对于800℃/24 h时效的Mo/Nb/Ta/Zr合金化样品,第二相(Laves相)粒子均弥散分布于铁素体基体中。1000℃/1 h再固溶处理,使系列合金中的第二相粒子发生回溶,至1200℃/1 h固溶后只含有Mo/Nb的合金中的第二相粒子已全部溶入到基体中,而在Ta和Zr微合金化的样品中仍有第二相粒子存在于基体的晶界处,有效抑制了基体晶粒在高温下异常长大,从而提高基体的组织稳定性和合金在高温下的力学性能。

关键词 金属材料Fe-Cr-Al-Mo-Nb/Ta/Zr合金铁素体不锈钢合金化组织稳定性第二相析出    
Abstract

The composition rule of the high-performance Fe-Cr-Al-Mo-Nb alloys was investigated in light of a cluster formula approach, and then a ternary cluster formula of Fe75Al9.375Cr15.625 (at.%) was determined. Mo, Nb, Ta, and Zr were added into the alloy to partially substitute for partial Cr of Fe-Cr-Al-Mo-Nb alloys. Alloy ingots were prepared by vacuum arc melting, and then solution-treated at 1200oC for 2h before hot-rolled at 800oC into sheets. The alloy sheets samples were aged at 800oC for 24 hrs, followed by re-solution treatments at 1000oC, 1100oC and 1200oC for 1 h respectively. The microstructure and microstructural stability at high temperature of the alloy sheetssamples under various treatments were comparatively studied compared to study the HT microstructural stability of this series of alloys. The results show that the fine precipitates (Laves phase) distributed homogeneously in the ferritic matrix of the aged Mo/Nb/Ta/Zr alloy sheetsed samples. However, these particles begin to re-dissolve into the matrix after 1000oC/1 h solution treatment. Moreover, these particles disappeared in the Mo/Nb containing alloy after 1200oC/1 h solution, while Ta or Zr further minor-alloying could still ensure a certain amount of precipitates distributed on the grain boundaries, which effectively suppresses the abnormal growth of grains at high temperature. Therefore, the HT microstructural stability at high temperature and the resulted ant mechanical properties could be improved.

Key wordsmetallic materials    Fe-Cr-Al-Mo-Nb/Ta/Zr alloys    ferritic stainless steels    alloying    microstructural stability    the second phase precipitation
收稿日期: 2016-11-28     
基金资助:中国核动力研究设计院反应堆燃料与材料重点实验室基金(ZX20150498),辽宁省自然科学基金(2015020202),国际科技合作计划(2015DFR60370),中央高校基本科研业务费专项资金(DUT16ZD212),国家自然科学基金(U1610256)
作者简介:

作者简介 张军政,男,1990年生,硕士生

No. Composition/% HV
Hot-rolled Aging Aging+
1000℃/1 h
Aging+
1100℃/1 h
Aging+
1200℃/1 h
1 Fe-4.75Al-13.55Cr-2.08Mo-1.01Nb 347 247 235 239 239
2 Fe-4.74Al-13.54Cr-2.08Mo-0.94Nb-0.13Ta 367 262 236 238 230
3 Fe-4.75Al-13.55Cr-2.08Mo-0.94Nb-0.07Zr 388 262 227 236 242
表1  Mo/Nb/Ta/Zr合金化的Fe-Cr-Al系列合金成分及不同处理状态下的显微硬度HV
图1  Mo/Nb/Ta/Zr合金化的Fe-Cr-Al系列合金热轧薄板经800℃/24 h时效后的XRD图
图2  Mo/Nb/Ta/Zr合金化的Fe-Cr-Al系列合金热轧薄板经800℃/24 h时效后的OM金相和SEM电子背散射像
图3  Mo/Nb/Ta/Zr合金化的Fe-Cr-Al系列时效合金在不同温度固溶处理后的SEM电子背散射像
图4  Mo/Nb/Ta/Zr合金化的Fe-Cr-Al系列时效合金在不同温度固溶处理后的OM金相组织. 1: 1000℃/1 h, 2: 1100℃/1 h, and 3: 1200℃/1 h
图5  No.2(Mo/Nb/Ta合金化)时效合金在1200℃固溶处理1 h后的EPMA结果
图6  No.3(Mo/Nb/Zr合金化)时效合金在1200℃固溶处理1 h后的EPMA结果
图7  Mo/Nb/Ta/Zr合金化的Fe-Cr-Al系列合金不同处理状态下的显微硬度HV
[1] Zhao W J, Zhou B X, Miao Z, et al.Development of Chinese advanced Zirconium alloys[J]. Atom. Energy. Sci. Technol., 2005, 39(suppl): 2(赵文金,周邦新,苗志等. 我国高性能锆合金的发展[J]. 原子能科学技术,2005,39(增刊): 2)
[2] Cockeram B V, Leonard K J, Byun T S, et al.Development of microstructure and irradiation hardening of Zircaloy during low dose neutron irradiation at nominally 377-440℃[J]. J. Nucl. Mater., 2014, 449(1-3): 69
[3] Liu W Q, Li Q, Zhou B X, et al.Effect of heat treatment on the microstructure and corrosion resistance of a Zr-Sn-Nb-Fe-Cr alloy[J]. J. Nucl. Mater., 2005, 341(2-3): 97
[4] Leistikow S, Schanz G.Oxidation kinetics and related phenomena of Zircaloy-4 fuel cladding exposed to high temperature steam and hydrogen-steam mixtures under PWR accident conditions[J]. Nucl. Eng. Des., 1987, 103(1): 65
[5] Azevedo C R F. Review: Selection of fuel cladding materials for nuclear fission reactors[J]. Eng. Fail. Anal., 2011, 18: 1943
[6] Pint B A, Terrani K A, Yamamoto Y, et al.Material selection for accident tolerant fuel cladding[J]. Metall. Mater. Trans. E., 2015, 2(3): 190
[7] Rebak R B.Alloy selection for accident tolerant fuel cladding in commercial light water reactors[J]. Metall. Mater. Trans. E., 2015, 2(4): 197
[8] Wu X, Kozlowski T, Hales J D.Neutronics and fuel performance evaluation of accident tolerant FeCrAl cladding under normal operation conditions[J]. Ann. Nucl. Energy., 2015, 85: 763
[9] George N M, Terrani K, Powers J, et al.Neutronic analysis of candidate accident-tolerant cladding concepts in pressurized water reactors[J]. Ann. Nucl. Energy., 2015, 75: 703
[10] Pint B A, Terrani K A, Brady M P, et al.High temperature oxidation of fuel cladding candidate materials in steam-hydrogen environments[J]. J. Nucl. Mater., 2013, 440: 420
[11] Cheng T, Keiser J R, Brady M P, et al.Oxidation of fuel cladding candidate materials in steam environments at high temperature and pressure[J]. J. Nucl. Mater., 2012, 427(1-3): 396
[12] Terrani K A, Zinkle S J, Snead L L, et al.Advanced oxidation-resistant iron-based alloys for LWR fuel cladding[J]. J. Nucl. Mater., 2014, 448(1-3): 420
[13] Terrani K A, Pint B A, Kim Y J, et al.Uniform corrosion of FeCrAl alloys in LWR coolant environments[J]. J. Nucl. Mater., 2016, 479 : 36
[14] Qu H P, Lang Y P, Yao C F, et al.The effect of heat treatment on recrystallized microstructure, precipitation and ductility of hot-rolled Fe-Cr-Al-REM ferritic stainless steel sheets[J]. Mater. Sci. Eng. A., 2013, 562: 9
[15] Stott F H, Wood G C, Stringer J.The influence of alloying elements on the development and maintenance of protective scales[J]. Oxid. Metals., 1995, 44: 113
[16] Capdevila C, Chao J, Jimenez J A, et al.Effect of nanoscale precipitation on strengthening of ferritic ODS Fe-Cr-Al alloy[J]. Mater. Sci. Technol., 2013, 29(10): 1179
[17] Field K G, Gussev M N, Yamamoto Y, et al.Deformation behavior of laser welds in high temperature oxidation resistant Fe-Cr-Al alloys for fuel cladding applications[J]. J. Nicl. Mater., 2014, 454:352
[18] Yamamoto Y, Pint B A, Terrani K A, et al.Development and property evaluation of nuclear grade wrought FeCrAl fuel cladding for light water reactors[J]. J. Nucl. Mater., 2015, 467: 703
[19] Dong C, Wang Q, Qiang J B, et al.From clusters to phase diagrams: composition rules of quasicrystals and bulk metallic glasses[J]. J. Phys. D.-Appl. Phys., 2007, 40: R273
[20] Hao C P, Wang Q, Ma R T, et al.Cluster-plus-glue-atom model in bcc solid solution alloys[J]. Acta. Phys. Sin., 2011, 60(11): 116101(郝传璞,王清,马仁涛等. 体心立方固溶体合金中的“团簇+连接原子”结构模型[J]. 物理学报,2011,60(11): 116101)
[21] Hong H L, Wang Q, Dong C, et al.Understanding the Cu-Zn brass alloys using a short-range-order cluster model: significance of specific compositions of industrial alloys[J]. Sci. Rep., 2014, 4(2): 7065
[22] Pang C, Jiang B B, Shi Y, et al.Cluster-plus-glue-atom model and universal composition formulas [cluster](glue atom)χ for BCC solid solution alloys[J]. J. Alloys Compd., 2015, 652: 63
[23] Wang Q, Zha Q F, Liu E X, et al.Composition design of superhigh strength maraging stainless steels using a cluster model[J]. Acta. Metall. Sin., 2012, 48(10): 1201(王清,查前锋,刘恩雪等. 基于团簇模型的高强度马氏体沉淀硬化不锈钢成分设计[J]. 金属学报,2012,48(10): 1201)
[24] Wang Q, Ji C J, Wang Y M, et al.β-Ti Alloys with Low Young's Moduli Interpreted by Cluster-Plus-Glue-Atom Model[J]. Metall. Mater. Trans. A., 2013, 44(4): 1872
[25] Li Z, Zhang R Q, Zha Q F, et al.Composition design of superhigh strength maraging stainless steels using a cluster model[J]. Prog. Nat. Sci. Mater. Int., 2014, 24(1): 35
[26] Zhang J, Wang Q, Wang Y M, et al.Revelation of solid solubility limit Fe/Ni = 1/12 in corrosion-resistant Cu-Ni alloys and relevant cluster model[J]. J. Mater. Res., 2010, 45(2): 328
[27] Takeuchi A, Inoue A.Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Mater. Trans., 2005, 46(12): 2817
[28] Cowley J M.An approximate theory of order in alloys[J]. Phys. Rev., 1950, 77(5): 669
[29] Cowley J M.Short-and long-range order parameters in disordered solid solutions[J]. Phys. Rev., 1960, 120(5): 1648
[30] Cowley J M.Short-range order and long-range order parameters[J]. Phys. Rev., 1965, 138(5A): A1384
[31] Wang Q, Li Q, Li X N, et al.Microstructures and stability origins of β-(Ti, Zr)-(Mo, Sn)-Nb alloys with low Young's modulus[J]. Metall. Mater. Trans. A., 2015, 46(9): 3924
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.