Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (10): 765-772    DOI: 10.11901/1005.3093.2016.581
  研究论文 本期目录 | 过刊浏览 |
离子液体对PbO2电沉积形核生长过程的影响研究
薛娟琴(), 张健, 王磊, 于丽花, 唐长斌, 毕强
西安建筑科技大学冶金工程学院 西安 710055
Influence of Ionic Liquid [Emim]BF4 on Nucleation and Growth of PbO2 during Electrodeposition
Juanqin XUE(), Jian ZHANG, Lei WANG, Lihua YU, Changbin TANG, Qiang BI
School of Metallurgical Engineering, Xi'an University Of Architecture and Technology, Xi'an 710055, China
引用本文:

薛娟琴, 张健, 王磊, 于丽花, 唐长斌, 毕强. 离子液体对PbO2电沉积形核生长过程的影响研究[J]. 材料研究学报, 2017, 31(10): 765-772.
Juanqin XUE, Jian ZHANG, Lei WANG, Lihua YU, Changbin TANG, Qiang BI. Influence of Ionic Liquid [Emim]BF4 on Nucleation and Growth of PbO2 during Electrodeposition[J]. Chinese Journal of Materials Research, 2017, 31(10): 765-772.

全文: PDF(1140 KB)   HTML
摘要: 

为揭示1-乙基-3-甲基-咪唑四氟硼酸盐([Emim]BF4)添加对PbO2阳极形核和生长过程的影响机制,利用电化学工作站测试PbO2在玻碳电极上沉积的电化学行为特征,包括:循环伏安曲线、计时电位曲线及计时电流曲线,并与氧化沉积的PbO2涂层表面形貌进行对比分析。结果表明,PbO2电沉积过程遵循三维连续成核模式,离子液体辅助时虽未明显改变PbO2电结晶机理,但对PbO2电沉积过程中成核和结晶长大速率均有抑制作用,其中以抑制核长大为主,从而明显地减小了PbO2结晶颗粒尺寸,得到致密的电极表面结构,使得电化学综合性能增强。

关键词 金属材料PbO2电沉积形核生长离子液体    
Abstract

The effect of 1- ethyl -3- methyl imidazole tetrafluoroborate ([Emim]BF4) on the nucleation and growth of PbO2 coating on glassy carbon electrode was studied during the electrodeposition process by means of in-situ cyclic voltammetry, chronopotentiometry and chronoamperometry with an electrochemical workstation. Besides, the surface morphology and crystal structure of PbO2 coating was characterized by SEM and XRD. The results show that PbO2 electrodeposition process follows the three-dimensional continuous nucleation model, the addition of ionic liquid in the electrolyte does not significantly change the electrocrystallization mechanism of PbO2, but can inhibit the nucleation and crystal growth rate of PbO2, so as to decrease the PbO2 grain size, densify the coating and enhance the electrochemical performance of the resulted PbO2 electrode.

Key wordsmetallic materials    PbO2    electrodeposition    nucleation growth    ionic liquid [Emim]BF4
收稿日期: 2016-10-08     
ZTFLH:  TQ153  
基金资助:国家自然科学基金(51478379,51408468),陕西省自然科学基金重大基础研究项目(2017ZDJC-25),陕西省教育厅专项科研计划(16JK1422)
作者简介:

作者简介 薛娟琴,女,1966年生,教授,博士

图1  PbO2在玻碳电极上电沉积过程的循环伏安曲线
图2  PbO2在玻碳电极上电沉积过程的电位-时间暂态曲线
图3  不同过电位下PbO2在玻碳电极上电沉积过程的电流-时间暂态曲线
图4  不同过电位下PbO2在玻碳电极上电沉积的电流-时间暂态无因次曲线与理论成核曲线对比
η /
mV
tm/s 10-3Im
/mAcm-2
10-7Im2tm
/A2scm-4
10-10 K 10-7D
/cm2s-1
104AN0
/cm-2s-1
A/s-1 106 Ns/cm-2
10 11.00 401.662 17.75 20.9 2.04 3.26 1.04 2.08
20 7.00 468.754 15.38 24.3 1.77 9.29 1.14 3.77
30 5.25 563.833 16.69 29.3 1.92 15.20 1.68 4.63
40 4.50 605.085 16.50 31.4 1.90 20.90 1.76 5.45
50 3.25 694.720 15.70 36.1 1.81 42.10 2.73 7.93
表1  PbO2在玻碳电极上电沉积暂态电流曲线的动力学参数分析
η /
mV
tm/s 10-3 Im
/mAcm-2
10-7Im2tm
/A2scm-4
10-10K 10-7D
/cm2s-1
104AN0
/cm-2s-1
A/s-1 106 Ns/cm-2
20 7.75 482.556 18.05 25.05 2.07 6.48 1.08 2.91
30 6.25 520.817 16.95 27.04 1.95 10.58 1.36 3.83
40 4.00 608.459 14.80 31.60 1.71 29.45 2.03 6.82
50 3.50 647.641 14.70 33.62 1.69 38.92 2.31 7.89
60 2.50 805.364 16.20 41.81 1.87 68.94 3.24 9.96
表2  添加50 mg/L[Emim]BF4后PbO2在玻碳电极上电沉积暂态电流曲线的动力学参数分析
图5  晶体生长速率与过电位关系曲线
图6  形核速率常数与过电位关系曲线
图7  饱和晶核密度与过电位关系曲线
图8  不同镀液条件下制备钛基PbO2的SEM图
图9  不同镀液条件下制备钛基PbO2的截面SEM图
图10  不同镀液制备的PbO2镀层的XRD图谱
[1] Andrade L S, Ruotolo L A M, Rocha-Filho R C, et al. On the performance of Fe and Fe, F doped Ti-Pt/PbO2 electrodes in the electrooxidation of the Blue Reactive 19 dye in simulated textile wastewater[J]. Chemosphere, 2007, 66: 2035
[2] Chen G H.Electrochemical technologies in wastewater treatment[J]. Sep. Purif. Technol, 2004, 38: 11
[3] Feng Y J, Li X Y.Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution[J]. Water Res., 2003, 37: 2399
[4] Liu Y, Liu H L, Ma J, et al.Investigation on electrochemical properties of cerium doped lead dioxide anode and application for elimination of nitrophenol[J]. Electrochim. Acta, 2011, 56: 1352
[5] An H, Li Q, Tao D J, et al.The synthesis and characterization of Ti/SnO2-Sb2O3/PbO2 electrodes: the influence of morphology caused by different electrochemical deposition time[J]. Appl. Surf. Sci., 2011, 258: 218
[6] Li X H, Pletcher D, Walsh F C.Electrodeposited lead dioxide coatings[J]. Chem. Soc. Rev., 2011, 40: 3879
[7] Liu Y, Liu H L, Ma J, et al.Investigation on electrochemical properties of cerium doped lead dioxide anode and application for elimination of nitrophenol[J]. Electrochim. Acta, 2011, 56: 1352
[8] Wang Y Q, Gu B, Xu W L, et al.Electrochemical oxidation of phenol on Ti-based PbO2 electrodes[J]. Rare Met. Mater. Eng., 2007, 36: 874(王雅琼, 顾斌, 许文林等. 钛基PbO2电极上苯酚的电化学氧化[J]. 稀有金属材料与工程, 2007, 36: 874)
[9] Ghaemi M, Ghafouri E, Neshati J.Influence of the nonionic surfactant Triton X-100 on electrocrystallization and electrochemical performance of lead dioxide electrode[J]. J. Power Sources, 2006, 157: 550
[10] Jin B X, Xie H W, Mao J, et al.Electrodeposition behavior of dysprosium in EMIMBF4 ionic liquid[J]. Rare Met. Mater. Eng., 2012, 41: 881(金炳勋, 谢宏伟, 毛景等. 1-乙基-3-甲基-咪唑四氟硼酸盐离子液体中镝电沉积行为[J]. 稀有金属材料与工程, 2012, 41: 881)
[11] Zhang J, Gong X L, Yu H H, et al.The inhibition mechanism of imidazoline phosphate inhibitor for Q235 steel in hydrochloric acid medium[J]. Corros. Sci., 2011, 53: 3324
[12] Yu L H, Xue J Q, Jiang M, et al.Influence of the ionic liquid [Emim]BF4 on electrochemical performance of lead dioxide electrode[J]. Rare Met. Mater. Eng., 2015, 44: 1932(于丽花, 薛娟琴, 蒋朦等. 离子液体对PbO2电极电化学性能的影响[J]. 稀有金属材料与工程, 2015, 44: 1932)
[13] Jin J K.Effect of additive on the process of tin electrodeposion in methanesulfonate solution[J]. Surf. Technol., 2007, 36(5): 53(靳佳琨. 添加剂对甲基磺酸盐镀锡电沉积过程的影响[J]. 表面技术, 2007, 36(5): 53)
[14] Tripathy B C, Das S C, Hefter G T, et al.Zinc electrowinning from acidic sulfate solutions: Part I: effects of sodium lauryl sulfate[J]. J. Appl. Electrochem., 1997, 27: 673
[15] Tang Y M, Kong C M.A preliminary study on electrodeposition and decolorization activity of β-PbO2-coated titanium electrodes from tetrafluoroborate solutions[J]. Mater. Chem. Phys., 2012, 135: 1108
[16] Xie T, Wang B.Two lead oxide preparation method[J]. J. Chengdu. Univ.(Nat. Sci.), 2003, 22(3) 25(谢天, 王斌. 二氧化铅电极制备方法综述[J]. 成都大学学报(自然科学版), 2003, 22(3): 25)
[17] Scharifker B, Hills G.Theoretical and experimental studies of multiple nucleation[J]. Electrochim. Acta, 1983, 28: 879
[18] Depestel L M, Strubbe K.Electrodeposition of gold from cyanide solutions on different n-GaAs crystal faces[J]. Journal of Electroanalytical Chemistry, 2004, 572(1): 195
[19] Ren X B, Lu H Y, Liu Y N, et al.3-Dimensional growth mechanism of lead dioxide electrode on the Ti substrate in the process of electrochemical deposition[J]. Acta Chim. Sin., 2009, 67: 888(任秀斌, 陆海彦, 刘亚男等. 钛基二氧化铅电极电沉积制备过程中的立体生长机理[J]. 化学学报, 2009, 67: 888)
[20] Yu J X, Chen Y Y, Huang Q A.The effects of some additives on the electrocrystallization of zinc on glassy carbon electrode[J]. J. Wuhan Univ.(Nat. Sci. Ed.), 2006, 42: 686(喻敬贤, 陈永言, 黄清安. 某些添加剂对锌在玻碳电极上电结晶的影响[J]. 武汉大学学报(自然科学版), 1996, 42: 686)
[21] Scharifker B R, Mostany J.Three-dimensional nucleation with diffusion controlled growth: Part I. Number density of active sites and nucleation rates per site[J]. J. Electroanal. Chem. Interf. Electrochem., 1984, 177: 13
[22] Zheng L F, Zheng G Q, Cao H Z, et al.Electrochemical nucleation of nickel on vitreous carbon in leaching solution containing ammonia and chloride[J]. J. Mater. Sci. Eng., 2003, 21: 882(郑利峰, 郑国渠, 曹华珍等. 氨络合物体系中镍在玻璃碳上的电化学成核机理[J]. 材料科学与工程学报, 2003, 21: 882)
[23] Milchev A, Stoyanov S.Classical and atomistic models of electrolytic nucleation: comparison with experimental data[J]. J. Electroanal. Chem. Interf. Electrochem., 1976, 72: 33
[24] Milchev A, Heerman L.Electrochemical nucleation and growth of nano- and microparticles: some theoretical and experimental aspects[J]. Electrochim. Acta, 2003, 48: 2903
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.